8 research outputs found

    Effects of Metallicity on the Rotation Rates of Massive Stars

    Full text link
    Recent theoretical predictions for low metallicity massive stars predict that these stars should have drastically reduced equatorial winds (mass loss) while on the main sequence, and as such should retain most of their angular momentum. Observations of both the Be/(B+Be) ratio and the blue-to-red supergiant ratio appear to have a metallicity dependence that may be caused by high rotational velocities. We have analyzed 39 archival Hubble Space Telescope Imaging Spectrograph (STIS), high resolution, ultraviolet spectra of O-type stars in the Magellanic Clouds to determine their projected rotational velocities V sin i. Our methodology is based on a previous study of the projected rotational velocities of Galactic O-type stars using International Ultraviolet Explorer (IUE) Short Wavelength Prime (SWP) Camera high dispersion spectra, which resulted in a catalog of V sin i values for 177 O stars. Here we present complementary V sin i values for 21 Large Magellanic Cloud and 22 Small Magellanic Cloud O-type stars based on STIS and IUE UV spectroscopy. The distribution of V sin i values for O type stars in the Magellanic Clouds is compared to that of Galactic O type stars. Despite the theoretical predictions and indirect observational evidence for high rotation, the O type stars in the Magellanic Clouds do not appear to rotate faster than their Galactic counterparts.Comment: accepted by ApJ, to appear 20 December 2004 editio

    Cellulose-Based Biomimetics and Their Applications

    No full text

    References

    No full text
    corecore