204 research outputs found
Dissecting the impact of Frizzled receptors in Wnt/beta-catenin signaling of human mesenchymal stem cells
Wnt/beta-catenin signaling is of fundamental importance in the regulation of self-renewal, migration/invasion, and differentiation of human mesenchymal stem cells (hMSCs). Because little information is available about the function of Frizzled receptors (Fzds) as the main receptors of Wnt proteins in hMSCs, we first performed comparative Fzd mRNA expression profiling. Fzd9 and Fzd10 were not expressed in hMSCs. While Fzd3 was expressed at low levels in hMSCs, the other Fzds exhibited high expression rates. Activation and repression of Wnt signaling in hMSCs revealed that the expression levels of Fzd1, Fzd6, and Fzd7 are positively correlated with the Wnt/beta-catenin activation status, whereas Fzd8 exhibited an inverse relation. For studying the functional relevance of Fzds in Wnt/beta-catenin signaling, RNA interference, ectopic expression studies, and rescue approaches were performed in hMSCs carrying a highly sensitive TCF/LEF reporter gene system (Gaussia luciferase). We found that, Fzd1, Fzd5, Fzd7, and Fzd8 are largely involved in Wnt/beta-catenin signaling of hMSCs. Moreover, the knockdown of Fzd5 can be compensated by the ectopic expression of Fzd7. Conversely, the ectopic expression of Fzd5 in Fzd7-knockdown hMSCs resulted in a rescue of Wnt/beta-catenin signaling, pointing to a functional redundancy of Fzd5 and Fzd7
Recommended from our members
Exploiting non-equilibrium phase separation for self-assembly
Demixing can occur in systems of two or more particle species that experience different driving forces, e.g., mixtures of self-propelled active particles or of oppositely charged colloids subject to an electric field. Here we show with macroscopic experiments and computer simulations that the forces underlying such non-equilibrium segregation can be used to control the self-assembly of particles that lack attractive interactions. We demonstrate that, depending on the direction, amplitude and frequency of a periodic external force acting on one article species, the structures formed by a second, undriven species can range from compact clusters to elongated, string-like patterns.Chemistry and Chemical Biolog
Precise Dosing of Pramipexole for Low-Dosed Filament Production by Hot Melt Extrusion Applying Various Feeding Methods
The aim of this research was the production of low-dosed filaments via hot-melt extrusion (HME) with the model drug pramipexole for the treatment of Parkinson’s disease. The active pharmaceutical ingredient (API) and one of the polymers polyvinyl alcohol (PVA) or basic butylated methacrylate copolymer (bPMMA) were fed by various dosing techniques with the aim of achieving the smallest deviation (RSD) from the target concentration of 0.1% (w/w) pramipexole. It was found that deviation from target pramipexole concentration occurred due to degradation products in bPMMA formulations. Additionally, material temperature above 120◦C led to the formation of the anhydrous form of pramipexole within the extruded filaments and need to be considered in the calculation of the recovered API. This study clearly shows that even if equilibrium state of the extrusion parameters was reached, equilibrium condition for drug content was reached relatively late in the process. In addition, the RSD calculated by the Stange–Poole equation was proposed by us to predict the final content uniformity considering the sample size of the analyzed filament. The calculated RSD, depending on sample size and drug load, can serve as upper and lower limits of variation from target concentration and can be used to evaluate the deviations of drug content in equilibrium conditions of the HME process. The lowest deviations from target concentration in equilibrium condition for drug content were obtained in filaments extruded from previously prepared granule mixtures (RSD = 6.00%, acceptance value = 12.2). These promising results can be transferred to other API–excipient combinations to produce low-dosed filaments, which can be used for, e.g., fused filament 3D printing. The introduced calculation of the RSD by Stange–Poole equation can be used for precise determination of the homogeneity of an extruded batch
Multi-Parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties
Heterogeneous populations of human bone marrow-derived stromal cells (BMSC) are among the most frequently tested cellular therapeutics for treating degenerative and immune disorders, which occur predominantly in the aging population. Currently, it is unclear whether advanced donor age and commonly associated comorbidities affect the properties of ex vivo-expanded BMSCs. Thus, we stratified cells from adult and elderly donors from our biobank (n = 10 and n = 13, mean age 38 and 72 years, respectively) and compared their phenotypic and functional performance, using multiple assays typically employed as minimal criteria for defining multipotent mesenchymal stromal cells (MSCs). We found that BMSCs from both cohorts meet the standard criteria for MSC, exhibiting similar morphology, growth kinetics, gene expression profiles, and pro-angiogenic and immunosuppressive potential and the capacity to differentiate toward adipogenic, chondrogenic, and osteogenic lineages. We found no substantial differences between cells from the adult and elderly cohorts. As positive controls, we studied the impact of in vitro aging and inflammatory cytokine stimulation. Both conditions clearly affected the cellular properties, independent of donor age. We conclude that in vitro aging rather than in vivo donor aging influences BMSC characteristics
Individual Effector/Regulator T Cell Ratios Impact Bone Regeneration
There is increasing evidence that T lymphocytes play a key role in controlling endogenous regeneration. Regeneration appears to be impaired in case of local accumulation of CD8+ effector T cells (TEFF), impairing endogenous regeneration by increasing a primary "useful" inflammation toward a damaging level. Thus, rescuing regeneration by regulating the heightened pro-inflammatory reaction employing regulatory CD4+ T (TReg) cells could represent an immunomodulatory option to enhance healing. Hypothesis was that CD4+ TReg might counteract undesired effects of CD8+ TEFF. Using adoptive TReg transfer, bone healing was consistently improved in mice possessing an inexperienced immune system with low amounts of CD8+ TEFF. In contrast, mice with an experienced immune system (high amounts of CD8+ TEFF) showed heterogeneous bone repair with regeneration being dependent upon the individual TEFF/TReg ratio. Thus, the healing outcome can only be improved by an adoptive TReg therapy, if an unfavorable TEFF/TReg ratio can be reshaped; if the individual CD8+ TEFF percentage, which is dependent on the individual immune experience can be changed toward a favorable ratio by the TReg transfer. Remarkably, also in patients with impaired fracture healing the TEFF/TReg ratio was higher compared to uneventful healers, validating our finding in the mouse osteotomy model. Our data demonstrate for the first time the key-role of a balanced TEFF/TReg response following injury needed to reach successful regeneration using bone as a model system. Considering this strategy, novel opportunities for immunotherapy in patients, which are at risk for impaired healing by targeting TEFF cells and supporting TReg cells to enhance healing are possible
Generation of Stable, Low-Divergence Electron Beams by Laser-Wakefield Acceleration in a Steady-State-Flow Gas Cell
Laser-driven, quasimonoenergetic electron beams of up to ~200 MeV in energy have been observed from steady-state-flow fas cells. These beams emitted within a low-divergence cone of 2.1 ± 0.5 mrad FWHM display unprecedented shot-to-shot stability in energy (2.5% rms), pointing (1.4 mrad rms), and charge (16% rms) owing to a highly reproducible gas-density profile within the interaction volume. Laser-wakefield acceleration in gas cells of this type provides a simple and reliable source of relativistic electrons suitable for applications such as the production of extreme-ultraviolet undulator radiation
Study Protocol: A Pilot Study to Determine the Safety and Efficacy of Induction-Therapy, De Novo MPA and Delayed mTOR-Inhibition in Liver Transplant Recipients with Impaired Renal Function. PATRON-Study
<p>Abstract</p> <p>Background</p> <p>Patients undergoing liver transplantation with preexisting renal dysfunction are prone to further renal impairment with the early postoperative use of Calcineurin-inhibitors. However, there is only little scientific evidence for the safety and efficacy of de novo CNI free "bottom-up" regimens in patients with impaired renal function undergoing liver transplantation. This is a single-center study pilot-study (<b>PATRON07</b>) investigating safety and efficacy of CNI-free, "bottom-up" immunosuppressive (IS) strategy in patients undergoing liver transplantation (LT) with renal impairment prior to LT.</p> <p>Methods/Design</p> <p>Patients older than 18 years with renal impairment at the time of liver transplantation eGFR < 50 ml/min and/or serum creatinine levels > 1.5 mg/dL will be included. Patients in will receive a CNI-free combination therapy (basiliximab, MMF, steroids and delayed Sirolimus). Primary endpoint is the incidence of steroid resistant acute rejection within the first 30 days after LT. The study is designed as prospective two-step trial requiring a maximum of 29 patients. In the first step, 9 patients will be included. If 8 or more patients show no signs of biopsy proven steroid resistant rejection, additional 20 patients will be included. If in the second step a total of 27 or more patients reach the primary endpoint the regimen is regarded to be safe and efficient.</p> <p>Discussion</p> <p>If a CNI-free-"bottom-up" IS strategy is safe and effective, this may be an innovative concept in contrast to classic top-down strategies that could improve the patient short and long-time renal function as well as overall complications and survival after LT. The results of <b>PATRON07 </b>may be the basis for a large multicenter RCT investigating the new "bottom-up" immunosuppressive strategy in patients with poor renal function prior to LT.</p> <p><url>http://www.clinicaltrials.gov</url>-identifier: NCT00604357</p
Local perceptions of intermittent screening and treatment for malaria in school children on the south coast of Kenya.
BACKGROUND: The intermittent screening and treatment (IST) of school children for malaria is one possible intervention strategy that could help reduce the burden of malaria among school children. Future implementation of IST will not only depend on its efficacy and cost-effectiveness but also on its acceptability to parents of the children who receive IST, as well as those responsible for its delivery. This study was conducted alongside a cluster-randomized trial to investigate local perceptions of school-based IST among parents and other stakeholders on the Kenyan south coast. METHODS: Six out of the 51 schools receiving the IST intervention were purposively sampled, based on the prevalence of Plasmodium infection, to participate in the qualitative study. Twenty-two focus group discussions and 17 in-depth interviews were conducted with parents and other key stakeholders involved in the implementation of school health programmes in the district. Data analysis was guided by the framework analysis method. RESULTS: High knowledge of the burden of clinical malaria on school children, the perceived benefits of preventing clinical disease through IST and previous positive experiences and interactions with other school health programmes facilitated the acceptability of IST. However, lack of understanding of the consequences of asymptomatic parasitaemia for apparently healthy school children could potentially contribute to non-adherence to treatment, and use of alternative anti-malarial drugs with simpler regimens was generally preferred. The general consensus of stakeholders was that health workers were best placed to undertake the screening and provide treatment, and although teachers' involvement in the programme is critical, most participants were opposed to teachers taking finger-prick blood samples from children. There was also a strong demand for the distribution of mosquito nets to augment IST. CONCLUSION: School-based malaria control through IST was acceptable to most parents and other stakeholders, but careful consideration of the various roles of teachers, community health workers, and health workers, and the use of anti-malarial drugs with simpler regimens are critical to its future implementation
Social Class
Discussion of class structure in fifth-century Athens, historical constitution of theater audiences, and the changes in the comic representation of class antagonism from Aristophanes to Menander
Steroid metabolism in cnidarians : insights from Nematostella vectensis
Author Posting. © Elsevier B.V., 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Molecular and Cellular Endocrinology 301 (2009): 27-36, doi:10.1016/j.mce.2008.09.037.Cnidarians occupy a key evolutionary position as a sister group to bilaterian animals. While cnidarians contain a diverse complement of steroids, sterols, and other lipid metabolites, relatively little is known of the endogenous steroid metabolism or function in cnidarian tissues. Incubations of cnidarian tissues with steroid substrates have indicated the presence of steroid metabolizing enzymes, particularly enzymes with 17β-hydroxysteroid dehydrogenase (17β-HSD) activity. Through analysis of the genome of the starlet sea anemone, Nematostella vectensis, we identified a suite of genes in the short chain dehydrogenase/reductase (SDR) superfamily including homologs of genes that metabolize steroids in other animals. A more detailed analysis of Hsd17b4 revealed complex evolutionary relationships, apparent intron loss in several taxa, and predominantly adult expression in N. vectensis. Due to its ease of culture and available molecular tools N. vectensis is an excellent model for investigation of cnidarian steroid metabolism and gene function.We are grateful for financial support from the Woods Hole Oceanographic Institution (WHOI) for Assistant Scientist Endowed Support Funds (AMT), the WHOI Academic Programs Office and the Beacon Institute for Rivers and Estuaries (AMR)
- …