78 research outputs found
New Algorithms for Fast and Economic Assembly: Advances in Transcriptome and Genome Assembly
Great efforts have been devoted to decipher the sequence composition of
the genomes and transcriptomes of diverse organisms. Continuing advances in
high-throughput sequencing technologies have led to a decline in associated
costs, facilitating a rapid increase in the amount of available genetic data. In
particular genome studies have undergone a fundamental paradigm shift where
genome projects are no longer limited by sequencing costs, but rather by
computational problems associated with assembly. There is an urgent demand
for more efficient and more accurate methods. Most recently, “hybrid”
methods that integrate short- and long-read data have been devised to address
this need. LazyB is a new, low-cost hybrid genome assembler. It starts from a
bipartite overlap graph between long reads and restrictively filtered short-read
unitigs. This graph is translated into a long-read overlap graph. By design,
unitigs are both unique and almost free of assembly errors. As a consequence,
only few spurious overlaps are introduced into the graph. Instead of the more
conventional approach of removing tips, bubbles, and other local features,
LazyB extracts subgraphs whose global properties approach a disjoint union of
paths in multiple steps, utilizing properties of proper interval graphs. A
prototype implementation of LazyB, entirely written in Python, not only yields
significantly more accurate assemblies of the yeast, fruit fly, and human
genomes compared to state-of-the-art pipelines, but also requires much less
computational effort. An optimized C++ implementation dubbed MuCHSALSA
further significantly reduces resource demands.
Advances in RNA-seq have facilitated tremendous insights into the role of
both coding and non-coding transcripts. Yet, the complete and accurate
annotation of the transciptomes of even model organisms has remained elusive.
RNA-seq produces reads significantly shorter than the average distance
between related splice events and presents high noise levels and other biases
The computational reconstruction remains a critical bottleneck.
Ryūtō implements an extension of common splice graphs facilitating the integration
of reads spanning multiple splice sites and paired-end reads bridging distant
transcript parts. The decomposition of read coverage patterns is modeled as a
minimum-cost flow problem. Using phasing information from multi-splice and
paired-end reads, nodes with uncertain connections are decomposed step-wise
via Linear Programming.
Ryūtōs performance compares favorably with
state-of-the-art methods on both simulated and real-life datasets. Despite
ongoing research and our own contributions, progress on traditional single
sample assembly has brought no major breakthrough. Multi-sample RNA-Seq
experiments provide more information which, however, is challenging to utilize
due to the large amount of accumulating errors. An extension to Ryūtō
enables the reconstruction of consensus transcriptomes from multiple RNA-seq
data sets, incorporating consensus calling at low level features. Benchmarks
show stable improvements already at 3 replicates.
Ryūtō outperforms competing approaches, providing a better and user-adjustable
sensitivity-precision trade-off. Ryūtō consistently improves assembly on
replicates, demonstrable also when mixing conditions or time series and for
differential expression analysis. Ryūtōs approach towards guided assembly is
equally unique. It allows users to adjust results based on the quality of the
guide, even for multi-sample assembly.:1 Preface
1.1 Assembly: A vast and fast evolving field
1.2 Structure of this Work
1.3 Available
2 Introduction
2.1 Mathematical Background
2.2 High-Throughput Sequencing
2.3 Assembly
2.4 Transcriptome Expression
3 From LazyB to MuCHSALSA - Fast and Cheap Genome Assembly
3.1 Background
3.2 Strategy
3.3 Data preprocessing
3.4 Processing of the overlap graph
3.5 Post Processing of the Path Decomposition
3.6 Benchmarking
3.7 MuCHSALSA – Moving towards the future
4 Ryūtō - Versatile, Fast, and Effective Transcript Assembly
4.1 Background
4.2 Strategy
4.3 The Ryūtō core algorithm
4.4 Improved Multi-sample transcript assembly with Ryūtō
5 Conclusion & Future Work
5.1 Discussion and Outlook
5.2 Summary and Conclusio
Economic Genome Assembly from Low Coverage Illumina and Nanopore Data
Ongoing developments in genome sequencing have caused a fundamental paradigm shift in the field in recent years. With ever lower sequencing costs, projects are no longer limited by available raw data, but rather by computational demands. The high complexity of eukaryotic genomes in concordance with increasing data sizes creates unique demands on methods to assemble full genomes. We describe a new approach to assemble genomes from a combination of low-coverage short and long reads. LazyB starts from a bipartite overlap graph between long reads and restrictively filtered short-read unitigs, which are then reduced to a long-read overlap graph G. Instead of the more conventional approach of removing tips, bubbles, and other local features, LazyB stepwisely extracts subgraphs whose global properties approach a disjoint union of paths. First, a consistently oriented subgraph is extracted, which in a second step is reduced to a directed acyclic graph. In the next step, properties of proper interval graphs are used to extract contigs as maximum weight paths. These are translated into genomic sequences only in the final step. A prototype implementation of LazyB, entirely written in python, not only yields significantly more accurate assemblies of the yeast and fruit fly genomes compared to state-of-the-art pipelines but also requires much less computational effort. Our findings demonstrate a new low-cost method that enables the assembly of even large genomes with low computational effort
S-100 protein positive cells in nasopharyngeal carcinoma (NPC): absence of prognostic significance. A clinicopathological and immunohistochemical study of 40 cases
An immunohistochemical study of S-100 protein in 43 nasopharyngeal carcinomas (NPC) of known clinical evolution (33 primary and 10 metastatic) is presented. Sixty per cent of primary site cases as well as all metastatic forms showed S-100 protein positive cells intermingled with tumour cells. These S-100 positive elements were identified as Langerhans cells. No significant differences were found when correlating S-100 protein positivity and histological NPC variants, neither in age nor in sex of patients. Statistical analysis failed to demonstrate any positive correlation between S-100 protein reactivity and clinical survival
Tools and data services registry: a community effort to document bioinformatics resources
Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.
Here we present a community-driven curation effort, supported by ELIXIR—the European infrastructure for biological information—that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.
As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools
Global warming and Bergmann’s rule: do central European passerines adjust their body size to rising temperatures?
Recent climate change has caused diverse ecological responses in plants and animals. However, relatively little is known about homeothermic animals’ ability to adapt to changing temperature regimes through changes in body size, in accordance with Bergmann’s rule. We used fluctuations in mean annual temperatures in south-west Germany since 1972 in order to look for direct links between temperature and two aspects of body size: body mass and flight feather length. Data from regionally born juveniles of 12 passerine bird species were analysed. Body mass and feather length varied significantly among years in eight and nine species, respectively. Typically the inter-annual changes in morphology were complexly non-linear, as was inter-annual variation in temperature. For six (body mass) and seven species (feather length), these inter-annual fluctuations were significantly correlated with temperature fluctuations. However, negative correlations consistent with Bergmann’s rule were only found for five species, either for body mass or feather length. In several of the species for which body mass and feather length was significantly associated with temperature, morphological responses were better predicted by temperature data that were smoothed across multiple years than by the actual mean breeding season temperatures of the year of birth. This was found in five species for body mass and three species for feather length. These results suggest that changes in body size may not merely be the result of phenotypic plasticity but may hint at genetically based microevolutionary adaptations
Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?
Ineffective treatment and poor patient management continue to plague the arena of clinical oncology. The crucial issues include inadequate treatment efficacy due to ineffective targeting of cancer deposits, systemic toxicities, suboptimal cancer detection and disease monitoring. This has led to the quest for clinically relevant, innovative multifaceted solutions such as development of targeted and traceable therapies. Mesenchymal stem cells (MSCs) have the intrinsic ability to “home” to growing tumors and are hypoimmunogenic. Therefore, these can be used as (a) “Trojan Horses” to deliver gene therapy directly into the tumors and (b) carriers of nanoparticles to allow cell tracking and simultaneous cancer detection. The camouflage of MSC carriers can potentially tackle the issues of safety, vector, and/or transgene immunogenicity as well as nanoparticle clearance and toxicity. The versatility of the nanotechnology platform could allow cellular tracking using single or multimodal imaging modalities. Toward that end, noninvasive magnetic resonance imaging (MRI) is fast becoming a clinical favorite, though there is scope for improvement in its accuracy and sensitivity. In that, use of superparamagnetic iron-oxide nanoparticles (SPION) as MRI contrast enhancers may be the best option for tracking therapeutic MSC. The prospects and consequences of synergistic approaches using MSC carriers, gene therapy, and SPION in developing cancer diagnostics and therapeutics are discussed. STEM CELLS 2010; 28:1686–1702
New Algorithms for Fast and Economic Assembly: Advances in Transcriptome and Genome Assembly
Great efforts have been devoted to decipher the sequence composition of
the genomes and transcriptomes of diverse organisms. Continuing advances in
high-throughput sequencing technologies have led to a decline in associated
costs, facilitating a rapid increase in the amount of available genetic data. In
particular genome studies have undergone a fundamental paradigm shift where
genome projects are no longer limited by sequencing costs, but rather by
computational problems associated with assembly. There is an urgent demand
for more efficient and more accurate methods. Most recently, “hybrid”
methods that integrate short- and long-read data have been devised to address
this need. LazyB is a new, low-cost hybrid genome assembler. It starts from a
bipartite overlap graph between long reads and restrictively filtered short-read
unitigs. This graph is translated into a long-read overlap graph. By design,
unitigs are both unique and almost free of assembly errors. As a consequence,
only few spurious overlaps are introduced into the graph. Instead of the more
conventional approach of removing tips, bubbles, and other local features,
LazyB extracts subgraphs whose global properties approach a disjoint union of
paths in multiple steps, utilizing properties of proper interval graphs. A
prototype implementation of LazyB, entirely written in Python, not only yields
significantly more accurate assemblies of the yeast, fruit fly, and human
genomes compared to state-of-the-art pipelines, but also requires much less
computational effort. An optimized C++ implementation dubbed MuCHSALSA
further significantly reduces resource demands.
Advances in RNA-seq have facilitated tremendous insights into the role of
both coding and non-coding transcripts. Yet, the complete and accurate
annotation of the transciptomes of even model organisms has remained elusive.
RNA-seq produces reads significantly shorter than the average distance
between related splice events and presents high noise levels and other biases
The computational reconstruction remains a critical bottleneck.
Ryūtō implements an extension of common splice graphs facilitating the integration
of reads spanning multiple splice sites and paired-end reads bridging distant
transcript parts. The decomposition of read coverage patterns is modeled as a
minimum-cost flow problem. Using phasing information from multi-splice and
paired-end reads, nodes with uncertain connections are decomposed step-wise
via Linear Programming.
Ryūtōs performance compares favorably with
state-of-the-art methods on both simulated and real-life datasets. Despite
ongoing research and our own contributions, progress on traditional single
sample assembly has brought no major breakthrough. Multi-sample RNA-Seq
experiments provide more information which, however, is challenging to utilize
due to the large amount of accumulating errors. An extension to Ryūtō
enables the reconstruction of consensus transcriptomes from multiple RNA-seq
data sets, incorporating consensus calling at low level features. Benchmarks
show stable improvements already at 3 replicates.
Ryūtō outperforms competing approaches, providing a better and user-adjustable
sensitivity-precision trade-off. Ryūtō consistently improves assembly on
replicates, demonstrable also when mixing conditions or time series and for
differential expression analysis. Ryūtōs approach towards guided assembly is
equally unique. It allows users to adjust results based on the quality of the
guide, even for multi-sample assembly.:1 Preface
1.1 Assembly: A vast and fast evolving field
1.2 Structure of this Work
1.3 Available
2 Introduction
2.1 Mathematical Background
2.2 High-Throughput Sequencing
2.3 Assembly
2.4 Transcriptome Expression
3 From LazyB to MuCHSALSA - Fast and Cheap Genome Assembly
3.1 Background
3.2 Strategy
3.3 Data preprocessing
3.4 Processing of the overlap graph
3.5 Post Processing of the Path Decomposition
3.6 Benchmarking
3.7 MuCHSALSA – Moving towards the future
4 Ryūtō - Versatile, Fast, and Effective Transcript Assembly
4.1 Background
4.2 Strategy
4.3 The Ryūtō core algorithm
4.4 Improved Multi-sample transcript assembly with Ryūtō
5 Conclusion & Future Work
5.1 Discussion and Outlook
5.2 Summary and Conclusio
New Algorithms for Fast and Economic Assembly: Advances in Transcriptome and Genome Assembly
Great efforts have been devoted to decipher the sequence composition of
the genomes and transcriptomes of diverse organisms. Continuing advances in
high-throughput sequencing technologies have led to a decline in associated
costs, facilitating a rapid increase in the amount of available genetic data. In
particular genome studies have undergone a fundamental paradigm shift where
genome projects are no longer limited by sequencing costs, but rather by
computational problems associated with assembly. There is an urgent demand
for more efficient and more accurate methods. Most recently, “hybrid”
methods that integrate short- and long-read data have been devised to address
this need. LazyB is a new, low-cost hybrid genome assembler. It starts from a
bipartite overlap graph between long reads and restrictively filtered short-read
unitigs. This graph is translated into a long-read overlap graph. By design,
unitigs are both unique and almost free of assembly errors. As a consequence,
only few spurious overlaps are introduced into the graph. Instead of the more
conventional approach of removing tips, bubbles, and other local features,
LazyB extracts subgraphs whose global properties approach a disjoint union of
paths in multiple steps, utilizing properties of proper interval graphs. A
prototype implementation of LazyB, entirely written in Python, not only yields
significantly more accurate assemblies of the yeast, fruit fly, and human
genomes compared to state-of-the-art pipelines, but also requires much less
computational effort. An optimized C++ implementation dubbed MuCHSALSA
further significantly reduces resource demands.
Advances in RNA-seq have facilitated tremendous insights into the role of
both coding and non-coding transcripts. Yet, the complete and accurate
annotation of the transciptomes of even model organisms has remained elusive.
RNA-seq produces reads significantly shorter than the average distance
between related splice events and presents high noise levels and other biases
The computational reconstruction remains a critical bottleneck.
Ryūtō implements an extension of common splice graphs facilitating the integration
of reads spanning multiple splice sites and paired-end reads bridging distant
transcript parts. The decomposition of read coverage patterns is modeled as a
minimum-cost flow problem. Using phasing information from multi-splice and
paired-end reads, nodes with uncertain connections are decomposed step-wise
via Linear Programming.
Ryūtōs performance compares favorably with
state-of-the-art methods on both simulated and real-life datasets. Despite
ongoing research and our own contributions, progress on traditional single
sample assembly has brought no major breakthrough. Multi-sample RNA-Seq
experiments provide more information which, however, is challenging to utilize
due to the large amount of accumulating errors. An extension to Ryūtō
enables the reconstruction of consensus transcriptomes from multiple RNA-seq
data sets, incorporating consensus calling at low level features. Benchmarks
show stable improvements already at 3 replicates.
Ryūtō outperforms competing approaches, providing a better and user-adjustable
sensitivity-precision trade-off. Ryūtō consistently improves assembly on
replicates, demonstrable also when mixing conditions or time series and for
differential expression analysis. Ryūtōs approach towards guided assembly is
equally unique. It allows users to adjust results based on the quality of the
guide, even for multi-sample assembly.:1 Preface
1.1 Assembly: A vast and fast evolving field
1.2 Structure of this Work
1.3 Available
2 Introduction
2.1 Mathematical Background
2.2 High-Throughput Sequencing
2.3 Assembly
2.4 Transcriptome Expression
3 From LazyB to MuCHSALSA - Fast and Cheap Genome Assembly
3.1 Background
3.2 Strategy
3.3 Data preprocessing
3.4 Processing of the overlap graph
3.5 Post Processing of the Path Decomposition
3.6 Benchmarking
3.7 MuCHSALSA – Moving towards the future
4 Ryūtō - Versatile, Fast, and Effective Transcript Assembly
4.1 Background
4.2 Strategy
4.3 The Ryūtō core algorithm
4.4 Improved Multi-sample transcript assembly with Ryūtō
5 Conclusion & Future Work
5.1 Discussion and Outlook
5.2 Summary and Conclusio
Nienburg und seine Eisenbahn: 1847 - 1987 ; 140 Jahre Eisenbahn Hannover -Bremen ; e. Beitr. zur Nienburger Stadtgeschichte
SIGLEAvailable from Bibliothek des Instituts fuer Weltwirtschaft, ZBW, Duesternbrook Weg 120, D-24105 Kiel C 149965 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
- …