326 research outputs found

    Asymptomatic lacrimal flow abnormalities in patients with septal deviations and turbinate hypertrophy

    Get PDF
    Background: This study aimed to investigate the lacrimal flow in patients affected by septal deviations and turbinate hypertrophy and to evaluate changes after rhinoseptoplasty with dacryocystography (DCT) and computed tomographic dacryocystography (CT-DCT). Methods: The study prospectively recruited patients having septal deviations with or without turbinate hypertrophy who underwent surgical evaluation for correction of their respiratory symptoms and were not referred for epiphora. Patients were excluded if they had undergone surgery for cranial vault defects or had experienced septal deviations after traumatic accidents. All patients were studied with DCT and CT-DCT preoperatively and postoperatively. Results: A total of 24 patients (10 men and 14 women) were recruited for the study. Of these patients, 11 (45.8%) had a reduced flow of the medium contrast due to a partial obstruction at the level of the internal ostium. All 11 patients had septal deviations and turbinate hypertrophy, whereas 8 patients had a unilateral obstruction (72.7%), and 3 patients had a bilateral obstruction (27.3%). All flows were corrected after surgery. Conclusions:The safe and well-tolerated radiologic techniques performed in this study provided detailed imaging of the lacrimal outflow system. A high incidence of partial obstruction to the internal ostium was found in patients with septal deviations, turbinate hypertrophy, and no lacrimal symptoms, suggesting a frequent presymptomatic condition

    Stable isotope‐based paleoaltimetry,

    Get PDF
    Abstract The quantitative estimation of paleoaltitude has become an increasing focus of Earth scientists because surface elevation provides constraints on the geodynamic mechanisms operating in mountain belts, as well as the influence of mountain belt growth on regional and global climate. The general observation of decreasing δ 18 O and δ 2 H values in rainfall as elevation increases has been used in both empirical and theoretical approaches to estimate paleoelevation. These studies rely on the preservation of ancient surface water compositions in authigenic minerals to reconstruct the elevation at the time the minerals were forming. In this review we provide a theory behind the application of stable isotope-based approaches to paleoaltimetry. We apply this theory to test cases using modern precipitation and surface water isotopic compositions to demonstrate that it generally accords well with observations. Examples of the application of paleoaltimetry techniques to Himalaya-Tibet and the Andes are discussed with implications for processes that cause surface uplift

    Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous (ca. 92 Ma)

    Get PDF
    Constraining the growth of the Tibetan Plateau in time and space is critical for testing geodynamic models and climatic changes at the regional and global scale. The Lhasa block is a key region for unraveling the early history of the Tibetan Plateau. Distinct from the underlying shallow-marine limestones, the Jingzhushan and Daxiong formations consist of conglomerate and sandstone deposited in alluvial-fan and braided-river systems. Both units were deposited at ca. 92 Ma, as constrained by interbedded tuff layers, detrital zircons, and micropaleontological data. Provenance and paleocurrent analyses indicate that both units were derived from the same elevated source area located in the central-northern Lhasa block. These two parallel belts of coeval conglomerates record a major change in paleogeography of the source region from a shallow seaway to a continental highland, implying initial topographic growth of an area over 160,000 km2, named here the Northern Lhasaplano. The early Late Cretaceous topographic growth of the Northern Lhasaplano was associated with the demise of Tethyan seaways, thrust-belt development, and crustal thickening. The same paleogeographic and paleotectonic changes were recorded earlier in the Northern Lhasaplano than in the Southern Lhasaplano, indicating progressive topographic growth from north to south across the Bangong-Nujiang suture and Lhasa block during the Cretaceous. Similar to the Central Andean Plateau, the Northern Lhasaplano developed by plate convergence above the oceanic Neo-Tethyan subduction zone before the onset of the India-Asia collision

    Rise of the Andes

    Get PDF
    The surface uplift of mountain belts is generally assumed to reflect progressive shortening and crustal thickening, leading to their gradual rise. Recent studies of the Andes indicate that their elevation remained relatively stable for long periods (tens of millions of years), separated by rapid (1 to 4 million years) changes of 1.5 kilometers or more. Periodic punctuated surface uplift of mountain belts probably reflects the rapid removal of unstable, dense lower lithosphere after long-term thickening of the crust and lithospheric mantle

    Tectonic denudation and topographic development in the Spanish Sierra Nevada

    Get PDF
    The denudation history of the rapidly uplifting western part of the Spanish Sierra Nevada was assessed using apatite fission track (AFT) ages and 10Be analyses of bedrock and fluvial sediments. Major contrasts in the denudation history are recorded within the 27 km2 Río Torrente catchment. Upland areas are characterized by low-relief, low slope angles, and locally the preservation of shallow marine sediments, which have experienced <200 m of erosion in the last 9 Myr. However, AFT age determinations from samples collected close to the marine sediments imply >2 km of denudation since circa 4 Ma. The minimum denudation rates of 0.4 mm yr−1 derived from AFT also contrast with the slow medium-term (104 years) erosion rates (0.044 ± 0.015 mm yr−1) estimated from 10Be measurements at high elevations. The local medium-long-term contrasts in denudation rates within the high Sierra Nevada indicate that much of the unroofing occurs by tectonic denudation on flat-lying detachments. In lower elevation parts of the catchment, rapid river incision coupled to rock uplift has produced ∼1.6 km of relief, implying that the rivers and adjacent hillslopes close to the edge of the orogen are sensitive to normal-fault-driven changes in base level. However, these changes are not transmitted into the low-relief slowly eroding upland areas. Thus the core of the mountain range continues to increase in elevation until the limits of crustal strength are reached and denudation is initiated along planes of structural weakness. We propose that this form of tectonic denudation provides an effective limit to relief in young orogens

    Tibet, the Himalaya, Asian monsoons and biodiversity - In what ways are they related?

    Get PDF
    Prevailing dogma asserts that the uplift of Tibet, the onset of the Asian monsoon system and high biodiversity in southern Asia are linked, and that all occurred after 23 million years ago in the Neogene. Here, spanning the last 60 million years of Earth history, the geological, climatological and palaeontological evidence for this linkage is reviewed. The principal conclusions are that: 1) A proto-Tibetan highland existed well before the Neogene and that an Andean type topography with surface elevations of at least 4.5 km existed at the start of the Eocene, before final closure of the Tethys Ocean that separated India from Eurasia. 2) The Himalaya were formed not at the start of the India-Eurasia collision, but after much of Tibet had achieved its present elevation. The Himalaya built against a pre-existing proto-Tibetan highland and only projected above the average height of the plateau after approximately 15 Ma. 3) Monsoon climates have existed across southern Asia for the whole of the Cenozoic, and probably for a lot longer, but that they were of the kind generated by seasonal migrations of the Inter-tropical Convergence Zone. 4) The projection of the High Himalaya above the Tibetan Plateau at about 15 Ma coincides with the development of the modern South Asia Monsoon. 5) The East Asia monsoon became established in its present form about the same time as a consequence of topographic changes in northern Tibet and elsewhere in Asia, the loss of moisture sources in the Asian interior and the development of a strong winter Siberian high as global temperatures declined. 6) New radiometric dates of palaeontological finds point to southern Asia's high biodiversity originating in the Paleogene, not the Neogene

    Large-scale drainage capture and surface uplift in eastern Tibet–SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L19403, doi:10.1029/2006GL027772.Current models of drainage evolution suggest that the non-dendritic patterns seen in rivers in SE Asia reflect progressive capture of headwaters away from the Red River during and as a result of surface uplift of Eastern Asia. Mass balancing of eroded and deposited rock volumes demonstrates that the Red River catchment must have been much larger in the past. In addition, the Nd isotope composition of sediments from the Hanoi Basin, Vietnam, interpreted as paleo-Red River sediments, shows rapid change during the Oligocene, before ∼24 Ma. We interpret this change to reflect large-scale drainage capture away from the Red River, possibly involving loss of the middle Yangtze River. Reorganization was triggered by regional tilting of the region towards the east. This study constrains initial surface uplift in eastern Tibet and southwestern China to be no later than 24 Ma, well before major surface uplift and gorge incision after 13 Ma

    Quantification of uncertainties in fossil leaf aleoaltimetry: does leaf size matter?

    Get PDF
    The utility of multivariate foliar physiognomy, specifically the Climate Leaf Analysis Multivariate Program (CLAMP), to yield reliable estimates of enthalpy and hence paleoelevation has been demonstrated by comparison with other proxies, yet concerns have arisen regarding uncertainties arising from 1) apparent ambiguities in the scoring regime and 2) the way leaf size is scored. Regarding 1) scoring ambiguities are examined by reporting on scoring tests with novice users and inter-laboratory comparisons. The uncertainties were found to be less than those arising from the statistical methodology underpinning CLAMP. In respect of 2) the effect of removing all size data both from modern test sites and fossil data was tested. Specifically the effect of removing leaf size data from the 15 Ma Namling data set from south central Tibet, was investigated. Removal of all size data from modern sites demonstrated that size data contributes little to estimates of MAT (Mean Annual Temperature) and enthalpy. Similarly the removal of leaf size information from the Namling data set alone, but with calibration unchanged, and from both the Namling site and calibration sites, this time with recalibration, still yield paleoelevation estimates that have been independently matched by oxygen isotope techniques. Moreover the removal of all leaf size information results in only small increases in uncertainty (± 52 m)

    Extension and Dynamics of the Andes inferred from the 2016 Parina (Huarichancara) Earthquake

    Get PDF
    The M w 6.1 2016 Parina earthquake led to extension of the south Peruvian Andes along a normal fault with evidence of Holocene slip. We use InSAR, seismology and field mapping to determine a source model for this event and show that extension at Parina is oriented NE-SW, which is parallel to the shortening direction in the adjacent sub-Andean lowlands. In addition, we use earthquake source models and GPS data to demonstrate that shortening within the sub-Andes is parallel to topographic gradients. Both observations imply that forces resulting from spatial variations in gravitational potential energy are important in controlling the geometry of the deformation in the Andes. We calculate 9 the horizontal forces per unit length acting between the Andes and South America due to these potential energy contrasts to be 4 − 8 × 10 12 N per metre along-strike of the mountain range. Normal faulting at Parina implies that the Andes in south Peru have reached the maximum elevation that can be supported by the forces transmitted across the adjacent foreland, which requires that the foreland faults have an effective coefficient of friction <0.2. Additionally, the onset of extension in parts of the central Andes following orogen-wide compression in the late Miocene suggests there has been a change in the force balance within the mountains. We propose that shortening on weak detachment faults within the Andean foreland since ∼5-9 Ma reduced the shear tractions acting along the base of the upper crust in the eastern Andes, leading to extension in the highest parts of the range

    Joint insolation and ice sheet/CO2 forcing on northern china precipitation during pliocene warmth

    Get PDF
    We demonstrate that the precipitation record on the Chinese Loess Plateau during the middle Piacenzian (3.264–3.025 Ma) has strong 20-kyr precessional cycles, challenging past knowledge about East Asian monsoon variations at the orbital timescales
    corecore