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Abstract1

The Mw 6.1 2016 Parina earthquake led to extension of the south Peruvian Andes along a normal2

fault with evidence of Holocene slip. We use InSAR, seismology and field mapping to determine a3

source model for this event and show that extension at Parina is oriented NE-SW, which is parallel to4

the shortening direction in the adjacent sub-Andean lowlands. In addition, we use earthquake source5

models and GPS data to demonstrate that shortening within the sub-Andes is parallel to topographic6

gradients. Both observations imply that forces resulting from spatial variations in gravitational poten-7

tial energy are important in controlling the geometry of the deformation in the Andes. We calculate8

the horizontal forces per unit length acting between the Andes and South America due to these po-9

tential energy contrasts to be 4 − 8 × 1012 N per metre along-strike of the mountain range. Normal10

faulting at Parina implies that the Andes in south Peru have reached the maximum elevation that can11

be supported by the forces transmitted across the adjacent foreland, which requires that the foreland12

faults have an effective coefficient of friction .0.2. Additionally, the onset of extension in parts of13

the central Andes following orogen-wide compression in the late Miocene suggests there has been a14

change in the force balance within the mountains. We propose that shortening on weak detachment15

faults within the Andean foreland since ∼5-9 Ma reduced the shear tractions acting along the base of16

the upper crust in the eastern Andes, leading to extension in the highest parts of the range.17

Key Points:18

• The Parina earthquake led to NE-SW extension in the high Andes of south Peru19

• Faults in the South American forelands have an effective coefficient of friction less than 0.220
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• The strength of faults within the forelands modulates the stress state in the high Andes21

1 Introduction22

On the 1st December 2016 (22:40:26 UTC) a Mw 6.1 normal-faulting earthquake occurred ∼70 km23

west of Lake Titicaca in the south Peruvian Andes (Fig. 1a). This event marks the first Mw > 624

extensional earthquake to occur within the Andes for 70 years, and provides a rare opportunity to25

study crustal deformation, lithosphere rheology and the forces driving deformation in this region.26

Observations of crustal deformation within the high Andes are sparse, but are fundamental to27

testing models of orogen dynamics [e.g. England and Houseman, 1989; Liu et al., 2002; Flesch and28

Kreemer, 2010]. One particular area of contention is whether extension in the high Andes is parallel29

[e.g. Dalmayrac and Molnar, 1981] or perpendicular [e.g. Sébrier et al., 1985; Mercier et al., 1992] to30

shortening in the adjacent sub-Andean lowlands. Extension in the Andes parallel to shortening in the31

sub-Andes can be explained by the balance between the forces arising from differences in gravitational32

potential energy between the mountains and lowlands, and the forces acting through the foreland33

lithosphere [Dalmayrac and Molnar, 1981; Froidevaux and Isacks, 1984]. However, if extension in the34

Andes is perpendicular to sub-Andean shortening, shear tractions acting on the base of the Andean35

lithosphere are required to influence the stress state in the mountains [e.g. Liu et al., 2002].36

Current observations of normal-faulting earthquakes in the Andes [Doser, 1987; Cabrera and Se-37

brier, 1998; Devlin et al., 2012; Jay et al., 2015] provide a limited constraint on the geometry of the38

extension, as the majority of the events are too small (Mw < 5.5) to break the full thickness of the seis-39

mogenic layer, so may not be representative of the dominant crustal strain [e.g. Brune, 1968; Jackson40

and White, 1989; Jackson and Blenkinsop, 1997; Scholz, 2002]. To supplement the sparse earthquake41

data, a number of studies have inferred the direction of extension throughout the Andes to be N-S42

based on slip vectors along minor fault planes [e.g. Sébrier et al., 1985; Mercier et al., 1992; Cladouhos43

et al., 1994; Schoenbohm and Strecker, 2009; Daxberger and Riller, 2015; Tibaldi and Bonali, 2018].44

However slip on minor faults also represents a small component of the total crustal strain, and may45

not accurately record the bulk orientation of extension [Riller et al., 2017].46

There also exists competing views regarding the orientation of shortening across the sub-Andean47

lowlands. Studies of earthquakes suggest shortening in the sub-Andes is parallel to gradients in the48

topography [Assumpção, 1992; Assumpção and Araujo, 1993; Lamb, 2000]. Alternatively, some studies49

have argued that the GPS velocity field in the sub-Andes can be explained by a combination of elastic50

strain accumulation on the locked Peru-Chile subduction interface and slip along a detachment fault51

beneath the sub-Andes. These elastic models assume motion on the detachment fault beneath the sub-52
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Andes has a slip vector parallel to relative plate motion between the Nazca plate and South America,53

rather than parallel to gradients in topography [Bevis et al., 2001; Chlieh et al., 2011].54

In this study we use geomorphology, seismology and interferometric synthetic aperture radar (In-55

SAR) to determine a detailed source model of the 2016 Parina earthquake, and relate the pattern56

of co- and post-seismic fault slip to the surface geomorphology. We then combine our source model57

for the Parina earthquake with additional seismological source models, and existing GPS data, to58

re-assess the pattern of crustal deformation in the high Andes, and its relationship with shortening59

in the adjacent sub-Andean lowlands. We use the pattern of deformation to test models of the forces60

driving deformation in the Andes, and investigate the rheology of the South American lithosphere.61

Finally, we discuss possible causes for the onset of normal faulting in the high Andes at ∼5-9 Ma, and62

suggest a general model for the support and evolution of mountain ranges based upon the strength of63

faults in their forelands.64

2 1st December 2016 Parina Earthquake65

The Mw 6.1 Parina earthquake occurred in a region of south Peru that has experienced a number66

of recent Mw 5-5.8 normal-faulting earthquakes [Dziewonski et al., 1981; Cabrera and Sebrier, 1998;67

Ekström et al., 2012; Devlin et al., 2012; Jay et al., 2015] (Fig. 1a). Geomorphic evidence of recent68

normal faulting in the epicentral region is scarce [e.g. Benavente et al., 2013], but has been documented69

further north near Cuzco [Suarez et al., 1983; Sébrier et al., 1985; Mercier et al., 1992; Benavente et al.,70

2013], and to the south near Arequipa [Lavenu et al., 2000]. The limited geomorphic expression of71

normal faults in south Peru probably reflects the small amount of finite extensional strain in the high72

mountains (< 1%; Sébrier et al. [1985]).73

2.1 Local Geomorphology and Surface Ruptures74

Surface ruptures associated with the Parina earthquake were mapped within three days of the event75

(Fig. 1b), and consist of two NW-SE trending sections with an along-strike length of ∼12 km, a76

maximum height of ∼30 cm (downthrown to the SW), and maximum tensional opening of ∼30 cm77

(Fig. 2). The ruptures coincide with a 150 m-high escarpment that extends an additional 10 km NW78

of Parina, and bounds a fluvial basin on its SW side (Fig. 1c). Tensional opening across the ruptures79

was largest in areas where vertical offsets were also highest, which is a common feature of normal80

faults that steepen in the near-surface [e.g. Jackson et al., 1982].81

The northern section of ruptures consist of discontinuous, overlapping splays that map onto NW-82

SE trending, metre-high scarps visible in pre-event satellite imagery (Fig. 2b). Both the tensional83
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opening and vertical offsets across the ruptures in the northern section were typically <10 cm (Fig.84

2d). In the southern section the ruptures have both opening and vertical components up to 30 cm85

(Fig. 2c), and form a semi-continuous trace that also coincides with a metre-high scarp (Fig. 2a).86

Dammed ponds on the downthrown (SW) side of the scarps pre-date the Parina earthquake (Fig.87

2a,b), and suggest there has probably been .10-20 m of slip on the Parina Fault since the last major88

glacial epoch reset the landscape in the region at ∼10-30 ka [Clapperton, 1983; Smith et al., 2005],89

implying a fault slip rate .1 mm/yr.90

2.2 Teleseismic Body Waveform Modelling91

We determined the strike, dip, rake, centroid depth, source-time function and moment release of the92

Parina earthquake by modelling the event as a finite-duration rupture at a point source, and performing93

a joint inversion of long-period P and SH seismic waveforms recorded at teleseismic distances using94

the MT5 program of Zwick et al. [1994] (based on the algorithm of McCaffrey and Abers [1988]95

and McCaffrey et al. [1991]). The methodology behind this procedure has been described in detail96

elsewhere [see Molnar and Lyon-Caen, 1989; Taymaz et al., 1990], hence only a brief summary will be97

provided here.98

Broadband seismograms recorded at stations within 30-90o of the earthquake epicentre were se-99

lected from the IRIS data management centre, and were filtered to reproduce the response of a long-100

period WWSSN instrument (15-100 s). Long-period waveforms are insensitive to small-scale hetero-101

geneity in the source region velocity structure [Taymaz et al., 1990], therefore we use a simple 1-D102

crustal velocity model with Vp = 6.5 km s−1, Vs = 3.7 km s−1 and density 2800 kg m−3 [Dorbath,103

1996; Schurr et al., 1999]. Inaccuracies in the velocity model typically lead to uncertainties in the104

centroid depth estimate of ±4 km for shallow (<30 km) crustal events [Taymaz et al., 1990]. Accurate105

arrival times of the P and SH phases were picked from the broadband seismograms. The starting106

model for the inversion was taken as the best double-couple gCMT solution [Ekström et al., 2012],107

and the final model is constrained to have a double-couple moment tensor.108

The minimum-misfit solution consists of a normal-fault source with a strike/dip/rake of 144/39/276,109

a centroid depth of 12 km, and a seismic moment of 1.1 × 1018 Nm (Mw 6.0) (Fig. 3). The mapped110

surface ruptures trend parallel to the minimum-misfit strike estimate, and the sense of motion across111

them indicates the SW-dipping nodal plane is the fault plane.112

Uncertainties in the source model were estimated by fixing each parameter of interest at values113

away from their best fit, and performing inversions in which all other parameters were free to vary.114

We estimate the strike to be constrained between 110 and 160o by the deterioration in fit between SH115
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waveforms recorded at stations DBIC, COYC and EFI outside this range (Fig. 4). Within this range116

of possible strikes, the dip cannot be lower than 35o otherwise the stations MPOM and SJG would117

lie near the P wave nodal plane, and the amplitude of the predicted P arrivals would be too low to118

fit the observations. Mechanisms with dips >55o do not fit the observed waveforms as they predict119

the incorrect SH first motion at stations FFC and SSPA. The rake must be in the range 250-300o to120

fit the SH first motions and amplitudes at stations DBIC, COYC, EFI and MESJ (Fig. 4). All the121

models that fit the observed waveforms have a slip vector azimuth between 211o and 245o (NE-SW).122

Centroid depths greater than 20 km cannot match the observed SH waveforms as the direct S and123

reflected sS phases separate, which is not observed (e.g. see clear waveform misfits at stations EFI124

and COYC in Fig. 4). For all inversion results with a good fit to the observed waveforms, the seismic125

moment is 0.9 − 1.4×1018 Nm (Mw 5.9-6.1).126

2.3 Co-seismic InSAR: Observations127

We formed Sentinel-1 ascending- and descending-track interferograms covering the co-seismic period128

of the Parina earthquake using the European Space Agency’s SNAP software (http://step.esa.129

int/main/). The effect of topography on phase in the interferograms was removed using an SRTM130

3-arcsecond elevation model [Farr et al., 2007], following which we phase filtered the interferograms131

[Goldstein et al., 1988], and unwrapped using the statistical-cost network-flow algorithm (SNAPHU)132

of Chen and Zebker [2001]. Additional information about the interferograms is provided in Table 3 in133

the Supplementary Information.134

The wrapped interferograms (Fig. 5) show 5-6 concentric, elongate fringes (corresponding to135

a maximum of ∼15 cm of line-of-sight displacement) oriented ∼NW-SE in both the ascending and136

descending track, which is consistent with ground motion resulting from a fault with the same geometry137

as our body-waveform solution. In addition, the similar pattern of displacement in the ascending and138

descending tracks implies the majority of the deformation was vertical, which is consistent with motion139

on a dip-slip fault [e.g. Copley et al., 2015]. The smooth fringe pattern, located to the SW of the140

surface ruptures, and the higher fringe density in the NE than the SW of the displacement patch,141

implies the majority of slip remained buried on a fault that dips SW, and has an up-dip projection142

coincident with the surface ruptures. The along-strike width of the fringes is ∼15 km, and faults that143

are ∼15 km long typically produce Mw 6.0-6.5 earthquakes [Wells and Coppersmith, 1994].144
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2.4 Co-seismic InSAR: Modelling145

We determine the source parameters of the fault responsible for the 2016 Parina earthquake by invert-146

ing the InSAR measurements of surface displacement for the best fitting constant-slip, rectangular,147

elastic dislocation [Okada, 1985] using a simulated annealing algorithm that minimizes the root-mean-148

square (RMS) misfit between model and observations [e.g. Copley et al., 2015]. We solve for the149

location of the fault plane, its length, width, strike, dip, rake, the amount of slip and a constant150

offset and linear ramp in line-of-sight (LOS) across each interferogram to account for long-wavelength151

atmospheric and orbital artefacts. The interferograms are down-sampled uniformly over the inversion152

window to 200 × 200 m pixels to reduce the number of data points in the inversion to ∼70,000. The153

starting model for the inversion is taken to be the SW-dipping nodal plane of our minimum-misfit154

body-waveform solution.155

To assess the fit between the models and the observations, we estimate the noise levels in the156

interferograms using the magnitude of phase variations within non-deforming regions. Noise in the157

interferograms leads to apparent LOS variations between 1.0 and 1.1 cm in the ascending interferogram,158

and between 0.8 and 0.9 cm in the descending interferogram.159

The inversion results suggest the InSAR data are best-fit by ∼0.5 m of slip buried on a 13 km long160

normal fault with a strike/dip/rake of 135/40/250 that mostly ruptured between 3 and 10 km depth161

(Fig. 6). The surface projection of the best-fit fault plane is coincident with the surface ruptures.162

RMS residuals between the best-fit model and the InSAR observations are 0.8 cm for the ascending163

track and 0.9 cm for the descending track, therefore the data are fit to within the noise levels, and a164

more complex model of distributed fault slip is not required or justified by the data.165

To test the sensitivity of the InSAR measurements to changes in the fault geometry, we performed166

a grid search of inversions in which each fault parameter was independently fixed at a range of values,167

whilst all others could vary, and measured how the misfit evolved (Fig. 7). We find that fault planes168

with strike = 120 − 145o, dip = 35 − 55o, rake = 250 − 270o, top depth = 1.5 − 4.5 km and bottom169

depth = 6 − 14 km can match the InSAR observations to within the noise levels. Together the170

range of acceptable solutions allows the slip vector azimuth to be between 230o and 280o (Fig. 7).171

The teleseismic waveform modelling constrains the slip vector azimuth to be between 211o and 245o,172

therefore the range of slip vectors consistent with all of the InSAR, seismology and surface rupture173

constraints have an azimuth of 230-245o (NE-SW; see Fig. 7).174
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2.5 Post-seismic Deformation175

Models of co-seismic fault motion indicate the majority of slip in the Parina earthquake remained176

buried below 3 km depth (Figs. 6, 7). However the 10-30 cm high surface ruptures measured three177

days after the earthquake suggest that some co-seismic slip reached the surface. Decreasing co-seismic178

slip on faults at shallow depths is common [e.g. Fialko et al., 2005] and has previously been observed179

for normal faults [e.g. Copley, 2012; Bie et al., 2014]. Limited shallow co-seismic slip is likely to180

reflect either inelastic deformation of the near-surface [Kaneko and Fialko, 2011], rate-strengthening181

frictional properties of the shallow fault zone [Marone and Scholz, 1988; Scholz, 1998], or both. In182

the latter case, the fault may creep post-seismically (‘afterslip’), causing transient, short-wavelength183

surface deformation near the co-seismic rupture.184

We formed interferograms covering the first 8 months following the Parina earthquake (Fig. 8a).185

In addition, we also generated a time-series of post-seismic deformation by extracting the relative LOS186

motions to either side of the surface ruptures from a series of interferograms that were formed with187

a common post-earthquake acquisition (collected within 19 days of the earthquake) as the reference188

image in each pair.189

The descending-track interferograms reveal a sharp offset in the LOS displacement field across the190

central section of surface ruptures, with the size of the offset increasing with time after the earthquake191

(Fig. 8a,f). The LOS offset decays with distance perpendicular to the surface ruptures over a length192

scale of ∼3-5 km (Fig. 8f), indicating the majority of post-seismic deformation is within the top 5193

km of the crust. Post-seismic signals are less clear in the ascending-track interferograms due to the194

larger component of atmospheric noise (Supp. Fig. 14). The temporal evolution of the post-seismic195

deformation follows a typical logarithmic transient decay [e.g. Smith and Wyss, 1968; Ingleby and196

Wright, 2017] with a relaxation time of 12 days (Fig. 8g), which is similar to estimates from a number197

of other studies [e.g. Savage et al., 2005; Fielding et al., 2009].198

We interpret the post-seismic InSAR observations to reflect shallow afterslip on the up-dip exten-199

sion of the co-seismic fault plane, and not shallow poro-elastic deformation [e.g. Peltzer et al., 1998;200

Fielding et al., 2009], because the sharp step in LOS directly correlates with the location of the co-201

seismic surface ruptures, and the polarity of the LOS motions are the same as those in the earthquake.202

We inverted the observed surface displacements 6 months after the Parina earthquake for the best fit,203

constant-slip fault (as in Section 2.4) with the rake fixed to that of the co-seismic fault model. The204

post-seismic InSAR measurements are consistent with ∼6-7 cm of afterslip on a fault with equivalent205

strike, dip and length to the co-seismic fault plane, but with afterslip focused between 0 and 4 km206

depth (Fig. 8b,d). However the constant-slip model cannot match both the smooth LOS displacement207
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pattern south of the surface ruptures, and the sharp change in LOS across the central section of the208

ruptures (Fig. 8a,f), indicating that afterslip did not extend to the surface along the whole fault. In209

addition, a small region of symmetrical footwall uplift and hanginwall subsidence across the southern210

section of surface ruptures requires a locally steeper-dipping fault plane of ∼70o to fit the observed211

LOS motion in that area (Fig. 8a,f).212

2.6 Parina Earthquake: Summary213

We find that the Parina earthquake ruptured a 13 km long, NW-SE trending, SW-dipping, shallow-214

crustal normal fault with a NE-SW (230-245o) oriented slip vector azimuth (source models summarised215

in Table 1). The majority of slip in the earthquake (∼0.5 m) was buried between 3-10 km depth,216

however a small component of slip did extend to the surface (0.1-0.3 m). Within 6 months of the217

earthquake around 15-35% of the shallow co-seismic slip deficit was released through post-seismic218

afterslip up-dip of the co-seismic rupture.219

Only by combining geodetic, seismological and field observations have we been able to properly220

quantify the uncertainty in the earthquake slip vector, and show that the direction of extension at221

Parina is NE-SW. Seismicity surrounding Parina is typically confined to the top 10-15 km of the crust222

(Fig. 1a), suggesting the Parina earthquake ruptured most, if not all, of the seismogenic layer. As a223

result, the NE-SW extension is likely to be representative of the dominant strain within this region.224

Shortening in the adjacent sub-Andean lowlands recorded in earthquake slip vectors and the orien-225

tation of fold axes and thrust fault scarps is parallel to the direction of extension at Parina (Fig. 1a),226

implying the mountains are locally deforming in plane strain. Smaller normal-faulting earthquakes227

with poorly-constrained source parameters show a similar pattern, but with significant variability, in228

which the direction of extension appears to be roughly oriented (within ±45o) with shortening in the229

adjacent sub-Andes [Cabrera and Sebrier, 1998; Devlin et al., 2012; Jay et al., 2015]. This is the230

pattern of fault slip expected if deformation within a mountain range is controlled by a contrast in231

gravitational potential energy between the mountains and its surrounding lowlands [e.g. Dalmayrac232

and Molnar, 1981; Copley et al., 2009].233

In the next section we assess the extent to which potential energy contrasts control the defor-234

mation patterns in the Andes and the South American forelands, using well-constrained depths and235

mechanisms of recent moderate-to-large magnitude earthquakes and existing GPS measurements.236
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3 Dynamics of Deformation in the Andes237

The forces controlling deformation in mountain ranges derive predominantly from (1) relative motions238

of the bounding plates, (2) gravity acting on density contrasts within the lithosphere, and (3) shear239

tractions on the base of the overriding lithosphere from the underthrusting of rigid foreland material240

[Artyushkov, 1973; England and Houseman, 1989; Wdowinski et al., 1989; Copley et al., 2011b]. These241

forces are in a quasi-static balance with each other, viscous resistance within the ductile lithosphere,242

and shear resistance on faults within the brittle crust. Different contributions of these forces to the243

overall balance will be reflected in the pattern of active faulting within the mountain range and its244

forelands [e.g. Molnar and Lyon-Caen, 1988].245

In order to investigate the pattern of active faulting in the Andes and South America, we compiled246

a catalogue of earthquakes with Mw > 5 that have been modelled using body waveforms or P wave247

first motions from literature sources [Suarez et al., 1983; Chinn and Isacks, 1983; Kadinsky-Cade et al.,248

1985; Doser, 1987; Assumpção and Suarez, 1988; Vega and Buforn, 1991; Assumpção, 1992; Assumpção249

and Araujo, 1993; Tavera and Buforn, 2001; Alvarado and Beck, 2006; Emmerson, 2007; Devlin et al.,250

2012; Scott et al., 2014] and 13 new solutions of our own (shown in Table 2). In addition, we included251

well-constrained gCMT catalogue events with >80% double-couple moment tensors (as defined in252

Jackson et al. [2002]) from Dziewonski et al. [1981] and Ekström et al. [2012], with hypocentral depths253

taken from the catalogue of Engdahl et al. [1998] where available. We have included waveform-modelled254

earthquakes with Mw 5-5.5 in this compilation, as small earthquakes provide information on the depth255

extent of faulting in South America [e.g. Assumpção and Suarez, 1988; Assumpção, 1992; Devlin et al.,256

2012]. Below we describe the pattern of earthquakes, in conjunction with GPS and geomorphological257

information, and discuss the implications for the forces acting on the Andes and the South American258

foreland.259

3.1 Faulting in the high Andes260

Moderate-magnitude earthquakes in the crust of the high Andes are infrequent, but reveal a pattern261

of predominantly shallow (<10-15 km) normal and strike-slip faulting events [Doser, 1987; Cabrera262

and Sebrier, 1998; Holtkamp et al., 2011; Devlin et al., 2012; Jay et al., 2015, This study] (Fig. 1a).263

One exception to this pattern is seen adjacent to the Shira Uplift in south Peru, where oblique reverse264

faulting in the high Andes was observed in the 1969 Pariahuanca earthquakes [Philip and Megard,265

1977; Suarez et al., 1983; Sébrier et al., 1988] (see PH1969; Fig. 1a). Otherwise the majority of266

the reverse-faulting earthquakes are confined to regions <3000 m elevation [Suarez et al., 1983]. The267

dependence of faulting mechanism on elevation is typical of mountain ranges in which gravitational268
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potential energy contrasts are an important factor in the forces controlling deformation [Dalmayrac269

and Molnar, 1981; Copley et al., 2009].270

Nearly all of the moment release from recent normal-faulting seismicity in the high Andes has been271

focused in south Peru, whilst the Altiplano and Puna plateau have remained essentially aseismic over272

the same time period (Fig. 1a). Geomorphological evidence of recent normal faulting is also concen-273

trated in south Peru, with a number studies identifying metre-high Holocene fault scarps bounding274

footwall uplifts with a few hundred metres of relief (e.g., Sangararra Fault [Suarez et al., 1983]; Tam-275

bomachay Fault [Mercier et al., 1992]; Langui-Layo Fault [Benavente et al., 2013]; Parina Fault [This276

study]). GPS measurements in south Peru limit the cumulative NE-SW extension rate across the277

high Andes to <5 mm/yr [Kendrick et al., 2001; Villegas-Lanza et al., 2016], which is equivalent to278

an extensional strain rate < 2 × 10−8 yr−1 over the 250 km wide plateau. In contrast, there is no279

evidence of recent fault-controlled relief in the Bolivian Altiplano, and the shallow crust is inferred to280

be undeforming [Lamb and Hoke, 1997; Lamb, 2000; Weiss et al., 2016]. Schoenbohm and Strecker281

[2009] and Zhou et al. [2013] identified a number of putative normal faults within the Puna plateau,282

however few of those mapped were associated with Holocene surface ruptures, and their estimated slip283

rates are .0.1 mm/yr over the last 0.5 Myrs. Therefore both the recent seismicity and Holocene fault284

activity imply that the high Andes in south Peru is extending faster than the Altiplano, and possibly285

faster than the Puna plateau.286

Differences in strain rate within an isostatically-compensated mountain belt deforming in response287

to variations in gravitational potential energy are related to differences in elevation [England and288

Houseman, 1989; D’Agostino et al., 2014]. Crustal thickness estimates [Assumpção et al., 2013] and289

small (<50 mGal) free-air gravity anomalies in the central Andean plateau both suggest that eleva-290

tion contrasts on length-scales much larger than the elastic thickness of the Andean crust (Te ≈ 10291

km; Rodŕıguez Tribaldos et al. [2017]) are predominantly isostatically supported. We isolated the292

long-wavelength, isostatically-compensated component of the topography by filtering the SRTM 3-293

arcsecond elevation model [Farr et al., 2007] using a Gaussian filter with a width of 100 km (i.e.294

>> Te). We find that the recent normal-faulting seismicity in south Peru occurs in a region with the295

highest smoothed modal elevation in the whole Andes at ∼4500 m, whilst the Altiplano and Puna296

have lower modal elevations of ∼3800 m and ∼4200 m, respectively (Supp. Fig. 15). Therefore297

the distribution of recent normal-faulting earthquakes may reflect higher extensional strain rates in298

the south Peruvian Andes compared to the surrounding mountains due to the region’s high relative299

elevation [e.g. England and Molnar, 1997].300

The current elevation contrasts influencing the extension rates within the Andes will decay expo-301
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nentially via flow of the lithosphere on a timescale that is dependent its viscosity. Using the unde-302

forming Bolivian Altiplano as a reference, we can combine the current maximum extensional strain303

rate estimate in south Peru, and the current elevation contrast between south Peru and Bolivia, to304

compute a lower bound on the vertically-averaged Newtonian viscosity of the lithosphere (η > 3×1021
305

Pa s; see Appendix A). Assuming the forces acting on the Andes have remained constant in the late306

Cenozoic, and given our lower bound on the lithosphere viscosity, elevation contrasts between south307

Peru and the surrounding high Andes will decay with a time constant of at least ∼3 Myrs, and are308

unlikely to have existed much earlier than 10 Ma (see Appendix A).309

Strike-slip faulting in the high Andes SW of Cuzco occurs where there are significant along-strike310

changes in the geometry of the mountain belt and the amount of E-W shortening across the sub-Andes311

[Kley and Monaldi, 1998] (Fig. 1a). In these isolated regions the Andes does not behave in a two-312

dimensional manner, as there is a component of strain along-strike, and therefore balancing forces on313

cross-sections perpendicular to the range front is not appropriate. In this study we focus on regions314

where extension in the high Andes is parallel to shortening in the adjacent lowlands, so the forces315

acting on the mountain belt can be treated in two dimensions [Dalmayrac and Molnar, 1981].316

3.2 Faulting in the Eastern Cordillera317

The Eastern Cordillera defines the area between the low relief, high elevation Andean plateau, and318

the sub-Andean lowlands (Fig. 1a). Seismicity in this region consists mainly of moderate magnitude319

reverse and strike-slip faulting, such as the 1998 Mw 6.6 Aiquile earthquake (Funning et al. [2005];320

AQ1998 on Fig. 1a). The N-S trending strike-slip rupture of the Aiquile earthquake cut across321

pre-existing fold-thrust belt structures that were active at ∼10 Ma, which indicates the intermediate322

principal stress has switched from being horizontal at the time in which the fold-thrust belt was active,323

to vertical [Funning et al., 2005]. This transition in stress state can be accounted for by recent uplift324

of the Eastern Cordillera [Gubbels et al., 1993; Lamb and Hoke, 1997], during which the forces due325

to contrasts in gravitational potential energy between the Eastern Cordillera and lowlands increased,326

such that they now balance the compressional forces transmitted across the sub-Andean ranges into327

the orogen interior.328

North of the Aiquile earthquake epicentre are the Cochabamba and Punata basins (Fig. 1a).329

These asymmetrical half grabens are filled with post-Miocene sediments and are bounded by large330

(∼2 km basement relief), NE-SW to E-W striking normal faults [Renner and Velasco, 2000], which331

are roughly perpendicular to the trend of the range front in the adjacent sub-Andes. Kennan [1993]332

proposed the basins formed predominantly through range-parallel (NW-SE) extension. Faults with333
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a similar geometry relative to the orogen front are seen in southern Tibet [e.g. Armijo et al., 1986],334

and have been attributed to the influence of potential energy contrasts driving radial spreading of the335

mountains over the adjacent rigid foreland [e.g. Armijo et al., 1986; Copley et al., 2011b] - a feature336

reflected in the earthquake slip vectors and GPS data from the Andes discussed in the next section. A337

similar process may account for the range-perpendicular normal faults at Cochabamba and Punata.338

3.3 Faulting in the sub-Andes and Peru-Chile Trench339

Faulting on the western edge of the Andes is dominated by large-magnitude (Mw >7.5) megathrust340

earthquakes along the subduction interface between the Andean forearc and the subducting Nazca341

plate [e.g. Pritchard et al., 2007; Sladen et al., 2010; Lin et al., 2013]. Slip in these megathrust342

earthquakes is consistently parallel to independent estimates of the orientation of motion between the343

Nazca plate and the South American shield [Norabuena et al., 1999; DeMets et al., 2010] (Fig. 9a).344

Although there is evidence of recent reverse faulting within the Andean forearc [e.g. Hall et al., 2012;345

Benavente et al., 2017], motion on these faults is small compared to slip on the megathrust.346

Unlike slip on the megathrust, the slip vectors of earthquakes on the eastern side of the Andes vary347

significantly along-strike of the mountain belt, with the most conspicuous changes occurring between348

south Peru and northern Argentina. North of Cuzco a thrust-faulting earthquake in 1998 (Fig. 9a;349

CZ1998) ruptured the shallow detachment beneath the sub-Andes with a NNE-directed slip vector,350

which is oriented ∼ 70o anti-clockwise to the Nazca-South America plate motion. Moving south351

between southern Peru and northern Bolivia the earthquake slip vectors rotate clockwise from NNE352

to NE (Fig. 9a). Around the Santa Cruz bend the slip vectors rotate rapidly clockwise by a further353

∼30-40o to point ∼E [Chinn and Isacks, 1983; Assumpção and Araujo, 1993; Devlin et al., 2012] (Fig.354

9a). Finally, within the sub-Andes of southern Bolivia and northern Argentina the slip vectors remain355

pointing ∼E, which is oriented ∼20-30o clockwise relative to Nazca-South America plate motion. The356

azimuth of the GPS velocity field in the eastern Andes relative to stable South America also rotates357

clockwise between south Peru and northern Argentina, mirroring the pattern in the earthquake slip358

vectors [Lamb, 2000; Kendrick et al., 2001; Weiss et al., 2016] (Fig. 9b).359

Elastic strain accumulation within the Andes from oblique subduction of the Nazca plate beneath360

the Andean forearc has been proposed to account for the rotation in the GPS velocities in the eastern361

Andes [Bevis and Martel, 2001; Bevis et al., 2001]. Although the elastic model of Bevis et al. [2001]362

fits the azimuth of GPS velocities south of the Santa Cruz bend, in southern Peru and northern363

Bolivia it consistently underpredicts the northward component of the GPS velocities and earthquake364

slip vectors (Fig. 9b,e-f; see Table 3). These spatially coherent misfits imply the elastic models are365
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not accurately capturing the orientation of the shortening direction in the sub-Andes. In addition, the366

assumption in Bevis et al. [2001] that shortening in the sub-Andes can be modelled as slip parallel to367

Nazca-South America plate motion on a detachment horizon beneath the sub-Andes is not consistent368

with the observed earthquake slip vectors (Fig. 9a).369

Alternatively, if the eastern Andes are deforming predominantly in response to horizontal contrasts370

in gravitational potential energy, then the direction of shortening will be parallel to topographic371

gradients [e.g. Lamb, 2000; Copley and McKenzie, 2007; Flesch and Kreemer, 2010]. We find that372

earthquake slip vectors in the sub-Andes are consistently parallel to gradients in the topography373

(Fig. 9b,d; Table 3). The topographic gradients also match the general pattern of clockwise rotating374

GPS azimuths between southern Peru and northern Argentina, the northward component of the375

GPS velocity field near Cuzco, and the rotation of the GPS velocities around the Santa Cruz bend376

(Fig. 9b). In addition, the azimuth of shortening inferred from the GPS and earthquake slip vectors377

are statistically better fit by the direction of topographic gradients than an elastic model of strain378

accumulation on the Peru-Chile subduction zone (see statistical comparison in Table 3).379

We therefore conclude that the forces resulting from relative plate motion control the orientation380

of slip on the subduction interface on the western side of the Andes, whilst contrasts in gravitational381

potential energy between the mountains and forelands control the orientation of slip on faults in the382

sub-Andean belt in the east [e.g. Assumpção and Araujo, 1993; Lamb, 2000].383

3.4 Faulting and Flexure in the South American Forelands384

Reverse-faulting earthquakes in regions >300 km from the Andes range front (Fig. 9a) indicate385

the South American foreland crust is breaking in response to compressional forces acting through386

the lithosphere [Assumpção, 1992]. However, within 300 km of the Andes range front, asymmetrical387

sedimentary basins [McGroder et al., 2015], long-wavelength, negative free-air gravity anomalies [Lyon-388

Caen et al., 1985], and shallow extensional faulting overlying compressional faulting at the base of the389

crust (Fig. 10, 11a,c) imply that the forelands are bending in response to the load of the Andes [e.g.390

Lyon-Caen et al., 1985; Watts et al., 1995].391

Evidence for extension in the Andes foreland is limited to a single Mw 6.4 normal-faulting earth-392

quake beneath the Llanos Basin (Fig. 9a, Table 2). Long-period waveform modelling suggests this393

earthquake had a centroid depth of 18+5
−5 km (Fig. 10). The Moho beneath the Llanos Basin is at ∼40-394

45 km depth [Assumpção et al., 2013], which implies the normal-faulting earthquake reflects extension395

in the shallow basement of the bending Andean foreland.396

A Mw 5.3 reverse-faulting earthquake has also been recorded beneath the Llanos Basin (Fig. 11a,c,397
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Table 2). We determined the centroid depth of this earthquake by comparing synthetic waveforms398

to stacked vertical-component seismograms recorded at a small-aperture array in Spitsbergen using399

the method of Craig et al. [2012]. The observed seismograms can be matched by a reverse-faulting400

earthquake at a centroid depth of 28+2
−2 km (Supp. Fig. 12). Reverse faulting has also been recorded at401

42 km depth beneath the Madre de Dios Basin in central Peru [Assumpção, 1992] (Fig. 11a), indicating402

that the bending portion of the South American lithosphere probably remains in compression from403

26-30 km to at least the base of the crust (Fig. 11c).404

Observations of shallow extensional earthquakes overlying deeper compressional earthquakes within405

the continental lithosphere are rare, and have only been documented previously in the forelands406

of Tibet [Molnar et al., 1977; Ni and Barazangi, 1984; Maggi et al., 2000b], and possibly in small407

(Mw < 4.5) earthquakes recorded in the forelands of the Alborz mountains [Nemati et al., 2013]. The408

pattern of earthquakes in both the Tibetan and Andean forelands implies that flexural stresses are409

large enough to break faults in underthrusting continental lithosphere.410

If we treat the flexed South American forelands as a thin bending plate, the magnitude of the411

flexural stresses can be related to the curvature of the plate, and a factor that is governed by the412

assumed rheology of the plate [Turcotte and Schubert, 2002]:413

σf =
ET

2(1 − ν2)

d2w

dx2
, (1)

where σf is the maximum flexural stress, E is Young’s modulus, ν is Poisson’s ratio, T is either the414

effective elastic thickness of the plate (in a purely elastic model), or the thickness of the aseismic415

elastic core (in an elastic-plastic model with a constant yield stress), and d2w
dx2

is the curvature of the416

plate.417

To estimate the curvature and effective elastic thickness (Te) of the South American foreland418

beneath the Llanos Basin we followed the method of McKenzie and Fairhead [1997] and modelled419

the free-air gravity anomalies produced by flexure of an elastic plate overlying an inviscid mantle420

half-space, with the plate overlain by low-density sediments. We find the gravity anomalies in the421

Llanos Basin can be fit by a plate model with a Te of at least 20 km (Fig. 11b,d). However the misfit422

between the modelled and observed gravity field at large Te values increases by only a fraction of the423

minimum misfit, suggesting our estimate represents only a lower bound (Fig. 11d). Our results are424

consistent with those of Pérez-Gussinyé et al. [2007] and McKenzie et al. [2014], who find that Te in425

the Andean forelands is between 15 and 25 km, which is significantly smaller than the seismogenic426

thickness (40-45 km; Assumpção and Suarez [1988]; Emmerson [2007]). Stewart and Watts [1997]427

found a larger Te of 50 km in the Llanos Basin, however their study relied on modelling individual428
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Bouguer gravity profiles, and fixed the location of the plate break, which has typically been shown to429

overestimate Te (see discussion in Jackson et al. [2008]).430

The maximum curvature of the plate in the best-fit model is ∼ 4×10−7 m−1 (Fig. 11b). Assuming431

the plate has a Young’s modulus of 1011 Pa and Poisson’s ratio of 0.25, Eq. 1 would give a maximum432

extensional flexural stress of ∼530 MPa. This stress will subject normal faults in the top half of the433

bending plate, which dip at ∼35o relative to the plate surface (e.g. Llanos Basin earthquake; Fig. 10),434

to average shear stresses .130 MPa. For a simple elastic-plastic plate with a constant yield stress435

[Turcotte and Schubert, 2002], and an elastic core <17 km thick (based on the depth distribution of436

earthquakes; Fig. 11c), the maximum flexural stresses are reduced to .360 MPa, and the average437

shear stresses on faults to .90 MPa. Further earthquakes could reduce our estimate of the elastic core438

thickness, and therefore reduce our stress estimates.439

In contrast to the bending portion of the South American forelands, the normal faulting in the440

high Andes and reverse faulting throughout the foreland crust >300 km from the Andes range front441

appears to be primarily controlled by the forces per unit length exerted between the mountains and442

South America due to lateral contrasts in gravitational potential energy. In the next section we present443

calculations to estimate the forces acting through the South American forelands, and place an upper444

bound on the frictional strength of faults within the foreland crust.445

4 Strength of the South American Forelands446

4.1 Forces acting between the Andes and the South American Forelands447

The forces per unit length due to potential energy contrasts between a mountain belt and its adjacent448

foreland can be calculated from lateral contrasts in the density structure between the two regions [e.g.449

Artyushkov, 1973; Dalmayrac and Molnar, 1981]. We build on the original calculations of Dalmayrac450

and Molnar [1981] by using new estimates of the temperature structure, chemical composition and451

thickness of the crust and mantle lithosphere to refine the estimates of the forces per unit length acting452

between the Andes and South America, following a method similar to that of Copley and Woodcock453

[2016]. A summary of the parameters used in the calculations is provided in Table 4, the choice of454

parameters and the methodology behind the calculations are described in detail in the Supplementary455

Information, and an overview of the calculations is provided below.456

We compute the horizontal force per unit length exerted between the Andes and South America by457

integrating the differences in vertical normal stress between the mountains and forelands (∆σzz) from458

the surface to the depth of isostatic compensation (FGPE =
∫

∆σzzdz) [Dalmayrac and Molnar, 1981].459
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By varying the temperature structure, composition and thickness of the crust and mantle lithosphere460

we find that the horizontal force per unit length acting between the Andes and the South American461

foreland is ∼ 4 − 8 × 1012 N per metre along-strike of the mountain range (Fig. 12a). This result is462

consistent with previous studies [Dalmayrac and Molnar, 1981; Froidevaux and Isacks, 1984; Molnar463

and Lyon-Caen, 1988; Meijer et al., 1997; Husson and Ricard, 2004; Oncken et al., 2012], but includes464

a larger range of uncertainty that is related to the range in possible lithospheric mantle thickness465

and the poorly-constrained temperature structure beneath the Andes that had previously not been466

considered (e.g. Molnar and Stock [2009]; see Supplementary Information).467

4.2 Fault Friction in the South American Forelands468

The forces per unit length due to contrasts in gravitational potential energy acting between the Andes469

and South America must be balanced by the forces acting through the South American foreland470

lithosphere. Reverse-faulting earthquakes throughout the non-bending regions of the South American471

forelands, outboard of the region of normal faulting in the high Andes, implies that these forces are472

large enough to exceed the static frictional strength of faults in the forelands (as is also seen in the473

Tibetan foreland in India [Copley et al., 2011a]).474

We construct one-dimensional yield stress profiles that reflect the stress state as a function of475

depth to the east of the sub-Andean belt in the bending and non-bending part of the South American476

foreland, and integrate the yield stress to estimate the force the lithosphere can support in these477

different regions (Ffl =
∫

∆σxxdz) [e.g. Goetze and Evans, 1979; Brace and Kohlstedt, 1980]. We478

then compare these estimates of foreland strength (Ffl) with our estimate of the forces per unit length479

acting through the foreland lithosphere (FGPE) to place an upper bound on the frictional strength of480

faults in the South American crust.481

Faults modulate the strength of the brittle portion of the lithosphere, which can be expressed as482

a function of the effective coefficient of friction [Turcotte and Schubert, 2002]:483

∆σxx =
2µ′ρgz

± sin 2θ − µ′(1 + cos 2θ)
, (2)

where µ′ is the effective coefficient of friction, ρ is the average crustal density, g is the acceleration484

due to gravity, z is the depth, θ is the angle of the fault from the vertical, and ∆σxx is the horizontal485

differential stress the faults can support. The ± sin 2θ term is negative if the faults are extensional486

and positive if they are compressional.487

Within 300 km of the Andes range front the top ∼5-8 km of the crust consists of sedimentary488

basins that contain no earthquakes [McGroder et al., 2015] (Fig. 11c), and that we assume support489
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negligible force. Outside of the sedimentary basins, earthquakes occur throughout the thickness of490

the crust [Assumpção and Suarez, 1988; Assumpção, 1992, This study] (Fig. 11c), and therefore we491

assume that stresses in the basement crust are supported by frictional resistance on faults given by492

Eq. 2.493

Earthquakes are absent from the foreland mantle lithosphere beneath South America (Fig. 11c). A494

similar pattern of seismicity has been observed in other continental shield regions (e.g., India [Maggi495

et al., 2000a; Craig et al., 2012]; Africa [Craig et al., 2011]; Sibera [Sloan et al., 2011]), and has496

been attributed to the temperature of the continental lithospheric mantle generally exceeding ∼600497

oC [McKenzie et al., 2005; Jackson et al., 2008], above which mantle rocks deform predominantly by498

ductile creep mechanisms. We use a dry olivine dislocation creep law to estimate an upper bound on499

the ductile strength of the lithospheric mantle [Karato and Wu, 1993]:500

∆σxx = Sε̇
1
n
r A
− 1

n exp

(
E + pV

nRT

)
, (3)

where S is the shear modulus, ε̇r is the reference strain rate which we calculate by imposing stress501

continuity at the brittle-ductile transition, A is a constant, n is the power-law exponent, E is the active502

energy, p is the pressure, V is the activation volume, R is the gas constant and T is the temperature503

(parameters given in Table 4). It has been suggested that upper mantle rocks at temperatures less504

than 750 oC may deform by low temperature plasticity (Peierl’s creep) [e.g. Mei et al., 2010; England505

and Molnar, 2015], which would support smaller differential stresses for a given strain rate than506

dislocation creep. If so, the forces supported by faults in the lithosphere would be slightly higher than507

our estimates. However, we also perform calculations in which the lithospheric mantle supports no508

stress, providing an absolute upper bound on the possible forces acting on faults within the crust.509

By performing a parameter sweep through the range of variables that control the shape of the510

yield stress envelope with depth (effective coefficient of friction, seismogenic thickness, fault dips,511

neutral fibre depth, elastic core thickness and sediment thickness; parameter range given in Table 4),512

we can define an envelope of the force that the lithosphere can support as a function of the effective513

coefficient of friction on crustal faults (Fig. 12b-d). We find that, in order to break in response to the514

4 − 8 × 1012 Nm−1 that we estimate above to be acting through the forelands, faults in the bending515

and non-bending regions of South America must have an effective coefficient of friction .0.15. If516

the lithospheric mantle supported no stress at all, which would resolve all the force acting through517

the foreland lithosphere onto faults in the crust, the maximum possible effective coefficient of friction518

would be 0.2 (Fig. 12d). If the faults in the South American crust were stronger, then they would519

not be breaking in earthquakes as a result of the forces per unit length generated by gravitational520
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potential energy contrasts between the Andes its bounding lowlands.521

Our low estimate of the effective coefficient of friction on faults in the South American crust is522

consistent with studies that infer elevated pore-fluid pressures [Sibson, 2004] or foliated, phyllosilicate-523

rich fault gouges [Imber et al., 2008; Collettini et al., 2009] may reduce the frictional strength of active524

fault zones relative to laboratory estimates of bare rock friction [Byerlee, 1978]. Notably, faults in the525

forelands with an effective coefficient of friction .0.2, that dip between 30-50o (Fig. 10), will support526

depth-averaged shear stresses .110 MPa, which is similar to our estimate derived from the analysis527

of flexure in Section 3.4.528

Previous studies of the dynamics in South America based on a ‘thin-viscous sheet’ approximation529

[England and McKenzie, 1982] imply the deviatoric stresses acting to deform the lithosphere are rel-530

atively small (σ′xx ≈ 10 − 30 MPa; Dalmayrac and Molnar [1981]; Lamb [2000]; Flesch and Kreemer531

[2010]). Our estimates of the horizontal forces acting through the ∼100-150 km thick foreland litho-532

sphere imply deviatoric stresses on the order of a few 10’s of megapascal, which is consistent with the533

aforementioned studies.534

5 Discussion535

5.1 Late Miocene Change in the Dynamics of the Andes536

The Parina earthquake and the surrounding seismicity demonstrates that the high Andes in south537

Peru are currently undergoing extension. A Mw 6.2-6.8 normal-faulting earthquake recorded in 1946538

at Ancash in central Peru [Heim, 1949; Doser, 1987], and a Mw 5.4 earthquake in the Bolivian Altiplano539

(Fig. 9a), suggest that a wider region of the high central Andes is also currently extending.540

Geological evidence of recent normal faulting in the high Andes is widespread, with examples of541

extensional structures in regions at elevations >3000 m from central and southern Peru [Dalmayrac542

and Molnar, 1981; Sébrier et al., 1985, 1988; Mercier et al., 1992; Veloza et al., 2012; Benavente et al.,543

2013; Kar et al., 2016], northern Chile [Tibaldi et al., 2009; Tibaldi and Bonali, 2018], southern and544

northern Bolivia [Mercier, 1981; Lavenu et al., 2000; Lamb, 2000] and northern Argentina [Cladouhos545

et al., 1994; Marrett et al., 1994; Lavenu et al., 2000; Schoenbohm and Strecker, 2009] (Figs. 9a,546

13). The timing of motion on these normal faults can be bracketed by cross-cutting relationships with547

the extensive volcanics erupted continually throughout the Andean orogeny. The earliest evidence548

of extension in the high Andes varies from ∼7-9 Ma in southern Bolivia and northern Argentina549

[Cladouhos et al., 1994; Montero Lopez et al., 2010], to ∼5-7 Ma in central and southern Peru [Mercier,550

1981; Cabrera et al., 1991; Giovanni et al., 2010; Benavente et al., 2013; Kar et al., 2016], and follows551
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an earlier period of widespread ∼E-W compression [Megard et al., 1984; Sébrier et al., 1985; Ellison552

et al., 1989; Mercier et al., 1992; Elger et al., 2005; Tibaldi et al., 2009]. Within the central Bolivian553

Altiplano folded Pliocene strata in the Corque-Corococo basin imply the shallow crust experienced554

waning shortening between ∼10 Ma and 3 Ma [Hoke and Lamb, 2007; Lamb, 2011], and has recently555

been undeforming [Elger et al., 2005; Lamb, 2011] (Fig. 13). The transition in stress state within556

parts of the high Andes of Peru and Argentina from dominantly compression to extension since the557

late Miocene, and the slowing of shortening in the lower elevation Bolivian Altiplano, is indicative of558

an orogen-wide change in the force balance.559

Over the same time interval (∼5-16 Ma) paleoelevation proxies infer there has been 1-3 km of560

surface uplift in the high Andes of southern Peru and Bolivia [e.g. Garzione et al., 2006; Barke and561

Lamb, 2006; Garzione et al., 2008; Saylor and Horton, 2014; Kar et al., 2016; Garzione et al., 2017].562

In addition, structural reconstructions and proxies for rock exhumation have recorded a distinct shift563

in the locus, rate and style of deformation on the eastern edge of the Andes. Prior to ∼10 Ma564

deformation in the eastern Andes consisted of slow, long-wavelength folding and bivergent reverse565

faulting of lower Paleozoic strata and metamorphic basement focused in the Eastern Cordillera [Kley,566

1996; Oncken et al., 2006; Espurt et al., 2008; Perez et al., 2016]. Since ∼10 Ma shortening rates in the567

eastern Andes have increased significantly [Oncken et al., 2006, 2012], and the locus of deformation has568

propagated rapidly eastwards into the sub-Andean lowlands [Gubbels et al., 1993; Echavarria et al.,569

2003; Gautheron et al., 2013; Perez et al., 2016], where Mesozoic foreland basin fill is exposed in short-570

wavelength (∼5-10 km) anticlinal ridges bound by closely-spaced splay faults above shallow-dipping571

detachments [e.g. Kley, 1996].572

Any attempt to explain the onset of normal faulting in the high Andes ∼5-9 Ma must also account573

for the observations described above (summarised in Fig. 13).574

5.2 Possible causes of Normal Faulting in the High Andes575

Removal of dense lower crust and mantle lithosphere (delamination) could increase the gravitational576

potential energy contrast between the mountains and forelands, leading to extension in the highest577

parts of the Andes [e.g. England and Houseman, 1989; Garzione et al., 2006]. Delamination has been578

proposed to account for the composition, timing and volume of ignimbrite and mafic volcanism [e.g.579

Kay and Mahlburg Kay, 1993], the Helium isotope ratios of hydrothermal fluids [Hoke and Lamb,580

2007], and the possible rapid Miocene-recent uplift of the central Andes [e.g. Garzione et al., 2006,581

2008, 2017]. However the relationship between crustal thickening and uplift rates in the Bolivian582

Altiplano [Lamb, 2011, 2016], and inconsistent seismic models that independently infer thick, thin583
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and variable thickness lithospheric mantle beneath the Andes [e.g. Whitman et al., 1992; Beck and584

Zandt, 2002; Phillips et al., 2012; Priestley and McKenzie, 2013; Ward et al., 2016], call into question585

whether delamination beneath the central Andes coeval with extension actually occurred.586

Another mechanism that has been suggested to induce extension in the high Andes is dynamic587

uplift of central Peru due to the subduction of the buoyant Nazca Ridge [Mercier et al., 1992; McNulty588

and Farber, 2002; Margirier et al., 2017]. Our observations of normal-faulting earthquakes 400 km589

south of the Nazca Ridge (Fig. 13), in addition to evidence of extensional faulting within elevated590

regions across the Andes, irrespective of the nature of the underlying subducting plate (e.g. flat slab591

segments; Gutscher et al. [2000]), indicates that the pattern of extension is probably unrelated to592

subduction processes. Similarly, the timing and distribution of normal-faulting earthquakes appears593

unrelated to the subduction zone earthquake cycle.594

Changes in the horizontal forces supported by the lithosphere bounding the Andes could also cause595

the onset of extension in the high mountains. The switch in shortening style in the eastern Andes596

∼10 Ma from steeply-dipping reverse faulting to shallow-dipping, weak detachment faulting within597

the foreland basin sediments could have reduced the shear stresses acting on the base of the overriding598

Andean lithosphere, leading to the onset of extension in the high mountains, a reduction in shortening599

rates in the Bolivia Altiplano, and enhanced shortening rates within the lowlands of the eastern Andes600

[Babeyko et al., 2006; Oncken et al., 2012]. We explore this possibility further below.601

The spatial relationship between normal faulting and foreland deformation style is suggestive of602

a causal link. Late Miocene to recent normal faulting in the high Andes correlates along-strike with603

regions of wide thin-skinned fold-thrust belts [Kley et al., 1999], the locations of low-angle thrust-604

faulting earthquakes [Devlin et al., 2012], and thick Paleozoic and Mesozoic sediments in the adjacent605

foreland basin [McGroder et al., 2015] (Supp. Fig. 17). In contrast, in regions where the active606

foreland deformation style comprises predominantly reverse faulting emerging at the front of steep607

topography (e.g., Shira Uplift of Peru [Kley et al., 1999]; Sierra Pampeanas of Argentina [Alvarado608

and Beck, 2006]; Oriente of Ecuador [Kley et al., 1999]) the style of faulting in the adjacent high609

Andes is dominantly compressional (Fig. 13). A particularly clear example is seen in the high Andes610

adjacent the Shira Uplift in Peru, where faulting in the 1969 Mw 6.1 and 6.6 Pariahuanca earthquakes611

was compressional [Philip and Megard, 1977; Suarez et al., 1983; Sébrier et al., 1988] (see PH1969; Fig.612

1a). However, both north and south of Shira, where the foreland has wide and active thin-skinned613

fold-thrust belts [Kley et al., 1999], the high Andes are undergoing extension [Heim, 1949; Doser, 1987;614

Devlin et al., 2012, This study] (Figs. 1a, 13).615

It is possible that once the Andes reached the maximum elevation that could be supported by616

20



Wimpenny et al., Normal Faulting and Dynamics in the Andes

the steep reverse faults bounding the eastern edge of the range ∼5-9 Ma (Fig. 14a), the plateau617

widened as faulting propagated eastward into the thick foreland basin sediments that had accumulated618

concomitant with uplift [e.g. Molnar and Lyon-Caen, 1989]. Foreland deformation then became focused619

along weak detachment layers above the sediment-basement interface, and the rigid Brazilian Shield620

was underthrust further beneath the mountains [Kley et al., 1999; Lamb, 2006, 2011; Phillips et al.,621

2012] (Fig. 14b). As the force balance in the eastern Andes is controlled by the horizontal shear622

stresses acting on the base of the overriding lithosphere [e.g. Huppert, 1982; McKenzie et al., 2000],623

reducing the frictional shear stresses along the nose of the foreland fold-thrust belt would be balanced624

by extensional viscous strain and normal-faulting within the overriding lithosphere (see the calculations625

presented in Craig and Copley [2018]). In addition to the onset of extension within the high Andes,626

the ductile lower crust in front of the indenting foreland lithosphere would shorten and thicken [Barke627

and Lamb, 2006; Lamb, 2011], balancing the flux of material out over the South American foreland.628

At the surface this would be visible as the mountains spreading eastwards over the forelands coeval629

with extension in the highest parts of the range - a feature that is reflected in the current pattern of630

crustal deformation (Fig. 14b).631

Previous models of the dynamics in the Andes have typically treated the mountain belt in terms632

of vertically-averaged stress and strain (i.e. a thin-viscous sheet) [Lamb, 2000; Liu et al., 2002; Flesch633

and Kreemer, 2010]. Under the thin-sheet assumptions shear stresses on the base of the lithosphere634

are negligible, and weakening the eastern side of the Andes would simply enhance shortening strain635

rates in that region to maintain the horizontal force balance. Our insight is to include the influence of636

the underthrust South American foreland, which will partition the force balance with depth beneath637

the mountains (i.e. Fu and Fp in Fig. 14b), and accommodate extension of the upper crust in the638

Andes.639

5.3 Implications for the Evolution of Orogenic Belts640

A generalisation of the model presented above, in which mountain belts weaken their forelands through641

syn-orogenic sedimentation, is likely to be broadly applicable to orogen evolution [e.g. Lamb, 2006;642

Copley et al., 2009; Reynolds et al., 2015]. For example, the deformation style within the forelands643

of the Tien Shan is dependent on the thickness of the sedimentary basins bounding the basement644

uplifts [Kober et al., 2013]. Along range fronts adjacent to thick (10-15 km) sedimentary basins,645

anticlinal folding above buried reverse faults extends ∼30 km into the piedmont, suggesting shortening646

is beginning to step out from the basement-cutting faults onto low-angle detachments in the foreland647

stratigraphy [Avouac and Tapponnier, 1993]. However in regions where the basin sediments are thin648
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(<5 km), faulting has remained focused along steep reverse faults that outcrop at the range front649

[Avouac and Tapponnier, 1993]. Quaternary-Holocene fault scarps [Thompson et al., 2002], and650

recent seismicity [Sloan et al., 2011], indicate shortening is still active throughout the interior of the651

Tien Shan, which probably reflects the fact that the steep, basement-cutting reverse faults can still652

transmit enough force into the mountain range to overcome the gravitational body forces acting to653

drive extension.654

In contrast, within the southern forelands of Tibet, deformation has focused onto detachment hori-655

zons that cut through the foreland stratigraphy, and emerge ∼80-100 km south of the high Himalaya656

[Lavé and Avouac, 2000]. Geomorphic evidence for uplift [Lavé and Avouac, 2000], and the pattern of657

shortening reflected in thrust-faulting earthquakes [Molnar and Lyon-Caen, 1989], is confined to the658

edges of the mountain belt, whilst extension occurs simultaneously in the high plateau [Armijo et al.,659

1986]. Tibet therefore represents a more advanced stage of orogen evolution, similar to the Altiplano,660

in which shortening has localised into the sediments of the foreland basin.661

In summary, we suggest the mechanical properties and nature of the stratigraphy within foreland662

basins may be important in modulating the forces transmitted across the forelands, the stress field663

within orogenic belts, and the elevation that mountain belts can attain.664

6 Conclusions665

We have used InSAR, seismology and field observations to determine a source model for the 1st666

December 2016 Mw 6.1 Parina earthquake in the high Andes of south Peru. Our models suggest667

the earthquake was generated by slip on a shallow-crustal normal fault that accommodated NE-SW668

extension. Slip in the earthquake was partially buried, and around 15-35% of the shallow co-seismic669

slip deficit was accommodated by post-seismic afterslip within 6 months of the event.670

We find that extension in the Parina earthquake was parallel to the direction of shortening across671

the adjacent sub-Andean lowlands, and that the pattern of shortening in the sub-Andes is controlled672

by gradients in the topography. In addition, we find that normal faulting earthquakes and geomorpho-673

logical evidence for recent extensional deformation within the Andes concentrates in regions with the674

highest elevations. All of these observations imply forces generated by lateral contrasts in gravitational675

potential energy are important in controlling deformation in the high Andes and its eastern lowlands.676

We calculated the force per unit length exerted between the Andes and its forelands due to varia-677

tions in gravitational potential energy to be 4−8×1012 N per metre along-strike. Earthquakes within678

the South American forelands > 300 km from the Andes range front suggest the crust is breaking679

in response to these forces, which requires the foreland faults have an effective coefficient of friction680
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.0.2, and support average shear stresses .110 MPa. Within 300 km of the Andes range front the681

extensional stresses in the shallow, bending portion of the foreland lithosphere are large enough to682

break faults. Using estimates of the curvature of the South American foreland and the rheology of683

the lithosphere, we can place similar upper bounds on the magnitude of the shear stresses acting on684

faults in the bending South American forelands (.90-130 MPa).685

Normal faulting in the Andes began in the late Miocene following a period of orogen-wide com-686

pression, which reflects a change in the force balance across the mountain range. The coeval onset of687

low-angle detachment faulting in the sub-Andes and extension in the high Andes ∼5-9 Ma, in addition688

to the spatial correlation between extension in the high mountains and wide thin-skinned fold-thrust689

belts in the adjacent sub-Andes, suggests weak detachment horizons in the foreland stratigraphy could690

have reduced the forces transmitted into the mountain belt by shear stresses along the base of the691

overriding lithosphere, leading to the onset of extension in the high mountains. The dynamics and692

evolution of the Andes, and we suggest most mountain ranges, may therefore be influenced by the693

mechanical strength of the stratigraphy in its forelands.694
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A Derivation of Relaxation Time-scale for Elevation Contrasts707

Consider two uniform columns of isostatically-compensated lithosphere with constant viscosity η,708

thickness L1 and L2 separated by a height difference h. A simple 1-D horizontal force balance between709

body forces acting on the columns and viscous resistance, assuming shear stresses on horizontal planes710

are negligible, is given by [D’Agostino et al., 2012; England and Molnar, 2015]:711

2L
∂τxx
∂x

=
∂Γ

∂x
, (A.1)

where τxx is the vertically-averaged deviatoric stress acting on the columns and Γ is the gravitational712

potential energy per unit area of the column. Assuming the columns are Newtonian (i.e. τxx = 2ηε̇xx)713

and integrating Eq. A.1 yields:714

ε̇xx =
∆Γ

4ηL
, (A.2)

where ∆Γ is the difference in gravitational potential energy between a column with zero strain rate715

(i.e. undeforming) and the column in question. For Airy isostatic compensation ∆Γ can be expressed716

approximately as γh, where γ is some constant scaling elevation contrasts between the deforming and717

undeforming area (h) to the gravitational potential energy contrast [D’Agostino et al., 2014]. In our718

case, one of the columns (i.e. the Bolivian Altiplano) is assumed to be undeforming, therefore the719

strain rate in the deforming column (i.e. south Peru) is proportional to the elevation of that column720

above the undeforming column.721

Assuming incompressibility of each column of lithosphere, and the conservation of area in cross722

section, horizontal extension of the column at strain rate ε̇xx in response to horizontal contrasts in723

gravitational potential energy would lead to thinning given by:724

dL

dt
= −ε̇xxL = −γh

4η
(A.3)

The difference in the thickness of the higher, deforming column and the undeforming column725

L1 − L2 is related to the elevation contrast through an isostatic relationship L1 − L2 = hρm∆ρ , where726

∆ρ is the density difference between mantle and crust. Substituting the isostatic relationship into Eq.727

A.3 gives the following first order ODE:728

dh

dt
+
γ∆ρ

4ηρm
h = 0 (A.4)

This equation has a particular solution of the form h(t) = h0 exp(−t/tr), where tr = 4ηρm
γ∆ρ and h0729
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is the starting elevation of the deforming column above the undeforming column. Therefore the730

elevation contrasts between deforming and undeforming regions within a mountain belt will decay731

exponentially at a rate dependent on the density contrasts between crust and mantle and the viscosity732

of the lithosphere.733

Given the maximum possible extensional strain rate in south Peru as 2× 10−8 yr−1, γ as 1.5× 109
734

N m−1 per metre of elevation (see calculations in Section 4.1), h as 700 m and L as 150 km, we can use735

Eq. A.2 to compute a lower bound on the viscosity, which is η > 3 × 1021 Pa s. Our lower bound on736

the viscosity of the lithosphere is consistent with Lamb [2000], who infer the average viscosity of the737

lithosphere in the Andes is 5−10×1021 Pa s. Taking ρm and ρc as 3300 and 2800 kg m−3, respectively,738

the relaxation time-scale of elevation contrasts would be tr > 3 Myrs. Under constant force boundary739

conditions, after >9 Myrs around 95% of the elevation contrasts between south Peru and Bolivia will740

have been removed via extension. We therefore infer that the elevation contrasts between south Peru741

and Bolivia are unlikely to have existed for >>10 Myrs.742
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Tables

Method Strike Dip Rake L, km W , km ū, m M0, Nm

gCMT 148o 43o 274o - - 0.4‡ 2.2×1018

USGS 134o 35o 263o - - 0.5‡ 2.3×1018

Ruptures 130-145o - - 12 - 0.1-0.3 0.4-1.3×1018 †

BWF 144o (110-160o) 39o (30-55o) 276o (250-300o) - - 0.2‡ 0.8-1.4×1018

InSAR 135o (120-145o) 40o (35-55o) 250o (250-270o) 13 12 0.5 2.4×1018

Table 1: Comparison of the source parameters determined from the surface ruptures, seismology
and InSAR observations of the Parina earthquake. BWF indicates the long-period body-waveform
solution. L and W are the along-strike length and down-dip width of the rupture patch, respectively.
Moment is calculated using M0 = µAū, where µ is the shear modulus (30 GPa), A is the fault area
and ū is the average fault slip. Values marked (†) have been calculated assuming the fault rupture is
square (i.e. L ≈W ), and values marked (‡) have been calculated assuming the fault is 13 km long and
square. For the body-waveform and InSAR model the range of acceptable fault geometry parameters
is given in brackets next to the best-fit value.

43



Wimpenny et al., Normal Faulting and Dynamics in the Andes

Date Time (GMT) Lon, o Lat, o s/d/r Mw z, km % DC Mech

1993 07 22 04:57:15 -71.18 6.49 024/35/-93 6.4 18 - , b

1994 05 31 17:42:04 -72.04 7.39 138/38/78 6.1 6 - , b

1995 01 19 15:05:11 -72.94 5.04 214/57/97 6.5 21 - , b

1995 10 03 01:51:37 -77.53 -2.55 216/40/103 6.8 19 - , b

2001 06 29 22:30:21 -70.35 -15.37 110/58/-107 5.4 6 82 , a

2001 08 12 00:16:32 -70.03 -16.76 130/45/-108 5.1 6 87 , a

2006 08 09 22:36:11 -70.75 -14.45 082/51/-93 5.2 8 87 , a

2009 11 06 08:50:02 -64.46 -23.44 224/30/131 5.4 20 92 , a

2010 02 27 15:45:43 -65.76 -24.85 162/25/97 6.2 9 99 , B

2011 10 06 11:12:37 -64.22 -24.18 176/56/91 5.9 15 - , b

2014 02 17 09:41:40 -71.58 6.64 008/67/117 5.3 28 70 , a

2015 11 29 18:52:59 -64.65 -23.56 222/29/129 5.8 4 98 , B

2017 04 18 17:49:59 -75.31 -2.73 028/42/88 5.9 15 88 , B

Table 2: Waveform modelling results for earthquakes in South America (not including Parina, see
Table 1). % DC is the percentage double-couple of the gCMT moment tensor (as defined in Jackson
et al. [2002]). Mechanisms with reference a are modelled by fitting vertical-component seismograms
with synthetic waveforms following the methods of Maggi et al. [2000b] and Craig et al. [2012] based
on Chapman [1978] and Kennett et al. [1995] (see Supplementary Information), whilst those with
reference b are modelled using long-period body-waveform inversion. For events labelled B we fixed
the earthquake mechanism and inverted for depth, source-time function and moment only.
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Test 1: all Test 2: N. of Santa Cruz

Test Megathrust Topography Megathrust Topography

SV RMS, deg 29 9 42 7

GPS RMS, deg 33 25 42 31

Table 3: Results of a statistical comparison between the azimuth of the GPS velocity field and
slip vectors (SV) in the eastern Andes, with the elastic model of strain accumulation on the Peru-
Chile megathrust from Bevis et al. [2001] and the azimuth of topographic gradients [e.g. Copley
and McKenzie, 2007]. A map view of the measurement sites and their azimuths is shown in Fig.
9b. Topographic gradients were calculated from a 300 km Gaussian filtered version of the SRTM
3-arcsecond elevation model [Farr et al., 2007]. Filter widths between 100-400 km give similar results.
RMS is the root-mean square misfit between the observed and modelled azimuth. Two tests are
shown, one in which all GPS and slip vector measurements shown in Fig. 9b are used to compute the
misfits (Test 1), and one in which only measurements from north of Santa Cruz are used to compute
the misfits (Test 2). In all cases the azimuth of the topographic gradients fit the observations better
than the model of elastic strain accumulation of Bevis et al. [2001].
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Variable Value Source

Crustal thickness, lowlands 35-45 km [Assumpção et al., 2013]

Crustal thickness, Andes 65-80 km [Assumpção et al., 2013]

Lithosphere thickness, lowlands 120-140 km [McKenzie and Priestley, 2008]

Lithosphere thickness, Andes 180-220 km or 0 km [see Supplementary Information]

Moho temperature, lowlands 600-700 oC [see Supplementary Information]

Moho temperature, Andes 700-1000 oC [Weber et al., 2002]

Mantle potential temperature 1315 oC [McKenzie et al., 2005]

Thermal expansivity†, crust 3 × 10−5 K−1 [Turcotte and Schubert, 2002]

Thermal expansivity†, mantle 3 − 4.5 × 10−5 K−1 [Bouhifd et al., 1996]

Asthenosphere density (ρa, 0 oC) 3330 kg m−3 [Turcotte and Schubert, 2002]

Lithospheric Mantle density (0 oC) ρa − 50 kg m−3 [Lucassen et al., 2005; McKenzie and Priestley, 2016]

Crustal density (0 oC) 2800 kg m−3 [Lucassen et al., 1999]

Foreland fault dips 30-50o [This study]

Activation energy (E) 540 kJ mol−1 [Karato and Wu, 1993]

Activation volume (V ) 20 cm3 mol−1 [Karato and Wu, 1993]

Stress exponent (n) 3 [Karato and Wu, 1993]

Seismogenic thickness 40-45 km [Assumpção and Suarez, 1988]

Foreland sediment thickness 5-8 km [McGroder et al., 2015]

Neutral fibre depth 13-28 km [see Section 3.5]

Elastic core thickness‡ 1-20 km [see caption]

Table 4: Parameters used in the calculations for the force exerted between the mountain range and
forelands, and for estimating the frictional strength of faults in the South American forelands. (†)
This is the linear coefficient of thermal expansion. (‡) The elastic core thickness is the extent of the
region either side of the neutral fibre in the bending South American foreland over which the stress
field changes from being extensional to compressional.
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Figures
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Figure 1: Overview of the Parina earthquake epicentral region. Waveform modelled (BWF) and
global catalogue earthquakes (gCMT; Ekström et al. [2012]) with Mw > 5 in the overriding plate are
shown in (a) (see Supplementary Table 1 for sources). We do not include earthquakes offshore in the
forearc. PH1969 are the 1969 Pariahuanca earthquakes [Philip and Megard, 1977; Suarez et al., 1983],
AQ1998 is the 1998 Aiquile earthquake [Funning et al., 2005] and CZ1998 is the 1998 Cuzco foreland
earthquake [Emmerson, 2007]. C marks the Cochabamba and Punata basins, and CCB marks the
Corque-Corococo Basin. The thick black line is the 3000 m contour from the 100 km Gaussian filtered
topography. The red box marks the location of (b) and (c). (b) is a Landsat 8 (bands 4,3,2) image
of the epicentral region. Black dots are the co-seismic surface ruptures, and black triangles mark the
inferred extension of the Parina Fault north of the surface ruptures. P and T marks the villages of
Parina and Togra. The centroid and mechanism of the best-fit InSAR fault plane, and the epicentre
of the USGS source model, are shown together with the epicentres of Mw > 4.0 NEIC aftershocks
(location error >5 km). Black boxes outline the locations of the satellite imagery in Figure 2, and the
region marked ‘Q’ is an open cast quarry. (c) is the SRTM 1-arcsecond topography covering the same
region as (b), highlighting the NW-SE trending step in topography associated with the Parina Fault.
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Figure 2: Geomorphology and surface ruptures of the 1st December 2016 Parina earthquake. (a)
shows a GoogleEarth satellite image (from 2015) of the southern end of the co-seismic ruptures near
Togra (see Fig. 1b). White triangles pick out small scarps in the topography that are associated with
the mapped co-seismic surface ruptures, and bodies of water marked SP are small ponds dammed
against the footwall scarp of the Parina Fault. (b) shows a similar GoogleEarth image (from 2015)
over the northern end of the ruptures near Saguanani Lake (marked S). The vertical offsets across the
surface ruptures in the southern section are up to 30 cm in height (c, geological hammer for scale)
and have a small opening component, whilst at the northern end of the rupture, most of the features
are hairline ruptures and have <10 cm offset (d, pen circled in red for scale).
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Figure 3: Minimum-misfit teleseismic body-waveform solution for the 1st December 2016 Pa-
rina earthquake. Details of the inversion result are shown below the title with the form
strike/dip/rake/depth/moment, where depth is in kilometres and moment is in Nm. The top panel
shows a lower hemisphere projection of the P wave nodal planes, with the station distribution used
in the best-fit inversion shown as capital letters. Observed and modelled seismograms are 40 second
time-series and are shown as black and red dashed lines, respectively. The seismogram station code is
shown to the left of the corresponding seismogram, and the inversion time window is demarcated by
vertical black ticks. P and T axes are projected onto the focal sphere as a black filled circle and an
open circle, respectively. The lower panel shows the equivalent for the SH waves. Seismograms that
are labelled with SKS occur within the 80-85o range from the epicentre, therefore may contain some
signal from phases that have interacted with the core. Stations with an asterisk are weighted to 0 in
the inversion as they contain a large component of noise, but are included for comparison with the
model predictions. The source-time function is shown as black triangles.
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Figure 4: Sensitivity tests showing fits between selected waveforms of the 2016 Parina earthquake
given variations in the source parameters. Each line shows P and SH focal spheres, the fault parame-
ters in strike/dip/rake/centroid depth/moment formation, the fit between modelled (red dashed) and
observed (black solid) waveforms at a set of stations, and the source-time function for that particular
model. The station codes are given at the top in each column, where Pd are vertical-component
waveforms and SHd are transverse waveforms. The best-fit model presented in Fig. 3 is shown on the
top row, and each subsequent row shows different inversion results in which the parameter in red is
held fixed, whilst all other parameters can vary.
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Figure 5: Wrapped co-seismic interferograms covering the 1st December 2016 Parina earthquake.
The dates of the pre- and post-event acquisitions are given in the form YYYYMMDD, and the line-
of-sight vector is shown in the bottom left. The incidence angle of this vector relative to the Earth’s
surface is between 30-43o. Black dots outline the locations of the co-seismic surface ruptures.
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Figure 6: Results of inversions for the best-fitting elastic dislocation model to the observed InSAR
surface displacements. The left panels show the unwrapped and downsampled interferograms covering
the co-seismic period. We use the convention that +ve LOS is motion towards the satellite. The black
polygon delineates a region with short wavelength, spatially variable LOS displacements that are likely
to represent offsets at the surface generated by local slope failure in the steep valley NE of Parina, and
open cast quarrying activity (Fig. 1b). The black dots are the mapped co-seismic surface ruptures.
The best-fitting model is shown in the middle panels, with the map view of the fault plane shown as a
black rectangle, and its surface projection as a black dashed line. The misfit between the observations
and models is shown in the panels on the right. Profiles between A-A’ through the observations (black
dots) and models (red dots) are shown below. Steep gradients of LOS displacement near the surface
ruptures (shown by the vertical arrows) are clear in the descending-track profile, however are not
present in the smoother ascending track data. These differences between the surface displacement
may reflect post-seismic afterslip, as the descending track acquisition was collected 19 days after the
earthquake, whilst the ascending track data only includes 8 days of post-seismic deformation. We
present models and a discussion of the post-seismic deformation in Section 2.5.
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Figure 7: Sensitivity analysis of the InSAR inversions to the fault parameters. The light red bars
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in the interferograms. The slip vector azimuth is given as the motion of the footwall relative to the
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Figure 8: Post-seismic deformation following the 2016 Parina earthquake. (a) shows a descending-
track interferogram covering 6 months of post-seismic deformation with a linear, long-wavelength ramp
removed. The pre- and post-event acquisition dates are given in YYYYMMDD format in the top left,
and the black dots are the co-seismic surface ruptures. The map view of the best-fit co-seismic fault
plane is shown as a black solid line, and its surface projection as a black dashed line. (b) shows
the best-fit fault model to the post-seismic surface displacement when the fault strike, dip and rake
are fixed to the co-seismic fault plane. (c) shows the residual between the model prediction and the
observed surface displacement. (d) and (e) show the best-fit fault model when the strike and rake
are fixed to their co-seismic values, and the dip is fixed to 70o. Profiles through the deformation field
between A-A’ and B-B’ are shown in (f), where the black dots are the observed LOS changes, the red
lines are the model in (b), the blue lines are the model in (d), and the grey bar denotes the location
of the surface ruptures. The temporal evolution of deformation in (g) records the change in relative
LOS between the immediate hangingwall and footwall of the Parina Fault derived from a series of
interferograms with a common reference. Error bars are the 1 standard deviation bounds on the
difference in LOS offset between the immediate hangingwall and footwall of the fault. The black solid
line is a best-fit curve of the form a ln (1 + t/tr), showing that the post-seismic deformation decays
with the logarithm of elapsed time [e.g. Smith and Wyss, 1968; Savage et al., 2005; Fielding et al.,
2009].
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Figure 9: Earthquake and GPS data demonstrating the pattern of deformation in the regions bound-
ing the Andes. (a) shows selected waveform-modelled earthquakes and well-constrained gCMT events
compiled from the literature and this study (see Supplementary Table 1 and 2 for a list of sources).
Thin lines are the 1, 2, 3 and 4.5 km elevation contours from the Gaussian filtered topography (300
km filter width). The light blue region is the area in which evidence for recent extension has been
documented in the high Andes (Supp. Fig. 17). LB is the Llanos Basin, AP is the Altiplano, PU is
the Puna plateau and SC is Santa Cruz. Both (a) and (b) are in oblique Mercator projection about
the Euler pole of the Nazca-South America convergence taken from DeMets et al. [2010], therefore slip
vectors parallel to relative plate motion will be horizontal [McKenzie and Parker, 1967]. (b) shows the
azimuth of shortening in the eastern Andes inferred from selected GPS sites [Kendrick et al., 2001;
Weiss et al., 2016] and earthquake slip vectors, compared with gradients in the filtered topography
(300 km Gaussian filter) and the elastic block model of Bevis et al. [2001]. GPS velocites in (b)
are shown relative to stable South America with 1σ uncertainty ellipses. (c-d) compare the azimuth
of the topographic gradients with the azimuth of the GPS and earthquake slip vectors, respectively.
(e-f) compare the predicted azimuths for the block model of Bevis et al. [2001] with the GPS and
earthquake slip vectors. The grey lines show the the root-mean square misfit (always positive), see
also Table 3.
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Figure 10: Minimum-misfit teleseismic body-waveform solution for the 22nd July 1993 Llanos Basin
earthquake. Figure layout is the same as for Fig. 3. The uncertainties in the fault parameters were
estimated using the method described in Section 2.2 and are strike = ±25o, dip = ±5o, rake = ±25o

and depth ±5 km.
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American forelands. (a) shows the EIGEN-6c free-air gravity map of South America [Shako et al.,
2014] low-pass filtered to exclude signals with wavelength <50 km that are unrelated to flexure [e.g.
Bry and White, 2007]. The purple box is the region within which profiles through the gravity field
perpendicular to the Andes range front have been extracted and stacked. AP marks the Altiplano.
(b) shows the stacked free-air gravity anomalies with 1 standard deviation (σ) bounds, and the best-fit
model to the observed gravity profile of an elastic plate overlying an inviscid half-space bending in
response to a line load and bending moment [e.g. Turcotte and Schubert, 2002]. We assume that the
sediments in the foreland basin are 500 kg m−3 less dense than the mantle beneath the plate, and
Young’s modulus and Poisson’s ratio of the plate are 1011 Pa and 0.25, respectively [Turcotte and
Schubert, 2002]. The colour of the line shows the absolute curvature of the plate model. (c) shows
the mechanisms of waveform-modelled foreland earthquakes as a function of distance from the Andes
range front. The Moho depth and uncertainty (1σ) is taken from the catalogue of Assumpção et al.
[2013]. (d) is the weighted misfit between the model and observations computed for a range of elastic

thicknesses, defined as H = 1
NΣ

[gm−go
σ

]2
, where gm and go are the modelled and observed free-air

gravity, respectively, and N is the number of measurements along the profile.
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Figure 12: Results of calculations for the forces per unit length acting through the South American
lithosphere, due to differences in gravitational potential energy between the Andes and the South
American forelands. (a) shows the force calculations as a function of relief between the mountains and
forelands (described in Section 4.1). Vertical black dashed lines delineate the range of appropriate
solutions for the Andes. The dashed black and white line defines the relationship between relief and
force assuming crustal isostasy, with a crustal thickness of 70 km and 40 km in the mountains and
lowlands, respectively. (b,c,d) show the results of calculations for the maximum force that can be
supported by the foreland lithosphere as a function of the effective coefficient of friction along faults,
as described in the Section 4.2. The three different cases shown are; (b) when the whole crust is in
compression and there is no sediment layer (i.e. the foreland outside the bending region); (c) when the
top 5-8 km of crust is sediment that supports no force, the top 5-13 km of basement is in extension,
and the bottom ∼20 km is in compression (i.e. the foreland in the bending region); and (d) the end-
member scenario when the lithosphere is bending, and the mantle supports no stress at all. Schematic
yield stress profiles are shown inset. Horizontal black dashed lines are the bounds on the horizontal
force acting through the South American lithosphere from the calculations in (a). Where the envelope
of models plots above these horizontal dashed lines, the lithosphere would be be too strong to break in
earthquakes in response to the forces generated by contrasts in gravitational potential energy acting
between the mountains and forelands.
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Figure 14: Sketch of the evolution of faulting in the Andes since the late Miocene. A reduction in
the frictional shear stresses (τf ) along the base of the eastern Andes ∼5-9 Ma would have reduced the
horizontal force acting through upper crust overriding the rigid foreland (Fu). A reduction in τf would
be balanced (FGPE = Fu + Fp) by an increase in the viscous resistance to shortening in the ductile
lower crust (Fp), extensional viscous strain within the centre of the mountain belt, and an increase in
the rate of propagation of the mountains over the rigid foreland.
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