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East Asian summer monsoon (EASM) precipitation affects the lives of billions of 25 

people and impacts the stability of fragile desert ecosystems in central Asia [1]. 26 

Therefore, many studies have focused on understanding the variability of the EASM 27 

and its relationship with insolation, ice sheet, and CO2 forcings [1-3]. Evidence for 28 

EASM variability is preserved in the eolian dust sequences on the Chinese Loess 29 

Plateau (CLP), which highlight the importance of Northern Hemisphere (NH) ice sheets, 30 

CO2 levels, and insolation in controlling the strength of the EASM during the 31 

Quaternary [2]. In contrast, Pliocene (5.3-2.6 Ma) proxy records of the EASM from the 32 

CLP reveal weak orbital signals, suggesting weak sensitivity to ice sheets, CO2 levels, 33 

and insolation forcing during this sustained warm period [4]. These Pliocene proxy 34 

records also contrast model simulations which suggest high sensitivity of the EASM to 35 

orbital forcing (particularly precession) during this time [5]. 36 

In order to investigate the apparent lack of strong orbital cycles in the Pliocene 37 

records from the CLP characterized by warm northern high latitudes and minor NH ice 38 

sheets [6], we generate a high-resolution (3 ka) monsoon precipitation record from the 39 

Loess Plateau (Fig. 1) using a recently proposed, promising magnetic parameter-based 40 

precipitation proxy (χfd/HIRM), with larger values corresponding to higher precipitation 41 

(see supplementary methods).  42 

Using either established paleomagnetic age model of the Loess Plateau Chaona site 43 

(supplementary methods and Fig. S1) or the orbitally-tuned age model (supplementary 44 

methods and Fig. S2), the χfd/HIRM record consistently shows dominant 20-ka cycles, 45 

in sharp contrast with the loess magnetic susceptibility record from the same section 46 



(Fig. 2 and Fig. S3), which fails to resolve any orbital cycles during the 3.25-2.95 Ma. 47 

The comparison of χfd/HIRM with June insolation gradient between 30ºN and 30ºS [7] 48 

suggests that high χfd/HIRM values align well with the high June insolation gradient 49 

(Fig. 2 and Fig. S3). We note that boreal summer insolation shows similar trends (Fig. 50 

S4) to the June insolation gradient (30ºN – 30ºS), but modern climate data suggest that 51 

the interhemispheric summer insolation gradient is a more likely forcing mechanism 52 

for monsoon moisture than boreal summer insolation [8]. 53 

Our results suggest that precipitation decreases at four low insolation intervals 54 

between 3.15 and 2.95 Ma (highlighted by pink bands, Fig. 2 and Fig. S3), although 55 

these decreases are not as pronounced as the other low insolation intervals, suggesting 56 

a non-linear response to insolation forcing. Interestingly, these four intervals correspond 57 

to larger ice volume (Fig. 2 and Fig. S3), indicating a likely role that ice sheets played 58 

in controlling monsoon precipitation. This inference is supported by comparing the 40-59 

ka band variations, where precipitation is out-of-phase with the June insolation gradient 60 

(Fig. S5) but in-phase with the benthic oxygen isotope stack [9] (Fig. S2). The χfd/HIRM 61 

record also shows non-orbital periodicities, such as the 30-ka and semi-precessional 62 

signals associated with beats or harmonics of orbital cycles [10] (Fig. 2), confirming 63 

that precipitation on the Loess Plateau had a non-linear response to insolation forcing. 64 

In order to test whether both insolation and ice sheets are joint forcing for northern 65 

China precipitation, we stacked the June insolation gradient with the benthic oxygen 66 

isotope record (Fig. S6). The stacked records show similar variations and cyclicities to 67 

the CLP precipitation proxy records, including main orbital cycles as well as semi-68 



precessional cycles (Fig. S6), providing further support for the inference that both 69 

insolation and ice sheets are joint forcing for northern China precipitation variations 70 

during the middle Piacenzian. 71 

Our results provide an opportunity to robustly understand precipitation variations 72 

in northern China and potential forcing during the Pliocene warmth at orbital bands. We 73 

discussed the implications of our findings as follows. 74 

First, although the middle Piacenzian period is characterized by a stable warm 75 

climate, our record reveals that precipitation was highly sensitive to insolation forcing. 76 

This finding is consistent with the South China Sea K/Si-based monsoon record [11], 77 

and together, the marine and terrestrial records consistently reveal high sensitivity of 78 

precipitation to insolation forcing in sustained warm periods. Second, our record 79 

suggests that Antarctic ice sheets likely played an important role in affecting northern 80 

China precipitation. The benthic oxygen isotope stack should indicate global ice volume 81 

variations during the Quaternary after onset of intensive NH glaciations, with NH ice 82 

sheet size variations playing a key role [2]. During the warm Pliocene, however, before 83 

the intensive onset of NH glaciation, variations in the benthic oxygen isotope stack 84 

should mainly reflect Antarctica ice sheet variations. During this time, pollen evidence 85 

from a Russian Arctic lakes indicates late Pliocene summer temperatures up to 8ºC 86 

warmer than today, with mean temperature in the warmest month consistently above 87 

10ºC, leaving little room for permanent ice sheets to exist [6]. Furthermore, drilling 88 

results from the Ross Sea reveal clear evidence for rapid cooling and Antarctica ice 89 

sheet size increase during the middle Piacenzian [12], supporting that middle 90 



Piacenzian ice sheet variations mainly occurred in Antarctica. The link between 91 

Antarctic ice sheets and CLP precipitation, based on the in-phase relationship between 92 

precipitation and the benthic oxygen isotope stack at the 40-ka band, can be achieved 93 

by at least two processes. I) Model simulations suggest that larger Antarctic ice sheets 94 

can intensify upwelling of circum-Antarctica deep water, which can reduce Southern 95 

Hemisphere (SH) sea ice and warm surface seawater [13]. Subsequently, northward 96 

propagation of SH warm seawater can result in a warmer Eurasia, more water vapor 97 

transport from surrounding oceans to continental China, and a larger sea-land pressure 98 

gradient associated with an amplified sea-land thermal contrast [13]. All of these factors 99 

would be able to promote EASM precipitation increase. II) It has been proposed that 100 

larger Antarctic ice sheets tend to push the Mascarene high and Australia high 101 

northward to intensify cross-equatorial moisture transport and Asian monsoon 102 

precipitation [14]. We note, however, that Antarctic ice volume fluctuations in the 103 

Pliocene could be a symptom of an underlying global forcing from CO2 amplification 104 

well known for the late Pleistocene [15]. Therefore, we consider both ice-volume and 105 

CO2 to be important forcing mechanisms for the observed precipitation variations at the 106 

40-ka band. 107 

In summary, the χfd/HIRM data presented here provides a high-resolution proxy 108 

record of precipitation from northern China between 3.25-2.95 Ma. 20-ka (precessional) 109 

cycles dominate the record, challenging past research suggesting weak sensitivity of 110 

northern China precipitation to insolation forcing during this sustained warm period in 111 

the late Pliocene. In addition, this record suggests Antarctic ice sheet growth and/or 112 



global atmospheric CO2 may influence precipitation at 40-ka timescales during this time. 113 

These findings highlight the importance of orbital forcing on precipitation even during 114 

times of relatively warm climate, such as the middle Piacenzian or during future climate 115 

scenarios.    116 
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Fig. 1. Map of study sites and modern Asian summer atmospheric circulation pattern. 174 

EASM: East Asian summer monsoon. ISM: Indian summer monsoon.  175 

 176 

Fig. 2. Chaona paleoclimate records and comparison with June insolation gradient and 177 

benthic oxygen isotope stack. (a) June insolation gradient [7]. (b) Chaona χfd/HIRM. (c) 178 

Chaona χlf. (d) Benthic δ18O stack [9]. (e)-(h) Power spectra of (a)-(d), respectively. The 179 

grey bands highlight the intervals where χfd/HIRM peaks correspond to June insolation 180 

gradient maxima. The pink bands highlight the complex relationship between χfd/HIRM, 181 

benthic δ18O, and insolation gradient. The y axes of the spectral plots are in log 10 scale. 182 

The age model was based on orbital tuning. 183 
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1. Abstract 24 

The processes controlling East Asian summer monsoon (EASM) variations during past 25 

warm periods are poorly known but important for understanding its response to 26 

prolonged warming. The eolian dust sequences on the Chinese Loess Plateau (CLP) play 27 

a pivotal role in understanding EASM variations, revealing that Quaternary EASM was 28 

forced by joint ice sheets, CO2 levels, and insolation forcing. However, the paleoclimate 29 

records from the Pliocene dust sequences on the CLP reveal weak sensitivity to any 30 

recognized forcing, which is inconsistent with model simulations. To resolve this puzzle, 31 

we present a 3-ka (thousand years) resolution precipitation record from the CLP, 32 

focusing on the middle Piacenzian (3.264–3.025 Ma), the closest persistently warm 33 

period in geological history, using a recently proposed precipitation proxy based on 34 

magnetic parameters. The record reveals dominant 20-ka precessional cycles, 35 

invalidating the prior hypothesis of a weak EASM sensitivity to insolation forcing 36 

during the warm Pliocene. At the 40-ka band, the precipitation record shows an inverse 37 

phase relationship with middle latitude summer insolation but an in-phase relationship 38 

with Southern Hemisphere ice volume, which we attribute to CO2 and/or ice sheet 39 

control on northern China precipitation via atmosphere or marine processes. These 40 

findings demonstrate a strong and highly variable EASM during the Pliocene, reshaping 41 

our understanding of EASM variations in past warm periods. 42 

2. Materials and methods 43 

2.1. Magnetic proxy 44 

Magnetic minerals produced during weathering are sensitive to climate in arid-semi 45 

arid region [16-19]. Hematite and nanometer-scale ferrimagnetic mineral (magnetite, 46 



 
 

which is quickly oxidized to maghemite due to high surface to volume ratio) are two 47 

commonly produced minerals during weathering [16, 19, 20]. It is generally accepted 48 

that hematite forms in dry environment [20]. In comparison with hematite, weathering-49 

produced nanometer-scale magnetite requires periods of reducing conditions in 50 

sediment so that Fe3+ can be reduced to Fe2+, which requires a wetter climate and higher 51 

precipitation [16, 21]. Therefore, the ratio of nanometer-scale magnetite-maghemite 52 

over hematite (i.e., the content of magnetic minerals generated during wetter climate 53 

divided by those generated during drier climate) is more sensitive to precipitation 54 

variations in the arid-semi arid regions than any single magnetic mineral alone. The ratio 55 

is represented by frequency-dependent magnetic susceptibility (χfd)/hard isothermal 56 

remanent magnetization (HIRM), where χfd indicates content of pedogenic nanometer-57 

scale ferrimagnetic grains and HIRM reflects hematite content. 58 

In order to measure the χfd/HIRM values, 108 bulk samples were collected at 5 cm 59 

intervals in the Chaona section. We measured the magnetic susceptibility (χ) of these 60 

samples at a lower frequency of 976 Hz and a higher frequency of 15616 Hz, using the 61 

AGICO multi-function spinner Kappabridge (MFK1-FA). χfd was then calculated based 62 

on the equation of χfd=χ976Hz–χ15616Hz. Isothermal remanent magnetization (IRM) 63 

intensity was measured at a magnetic field of 1.2 T and -0.3 T, respectively. HIRM (hard 64 

IRM) was calculated as (IRM1.2T + IRM–0.3T)/2. Finally, we calculated χfd/HIRM values 65 

of 108 samples. These experiments were carried out at the Paleomagnetism Laboratory 66 

in the China University of Geosciences, Beijing, China. 67 

2.2. Establishing the initial age model of the Chaona section on the Loess Plateau 68 



 
 

The age model of the Chaona section (35.1°N, 107.2°E) on the CLP was established 69 

using paleomagnetism dating [22] in 2001. To reconstruct the orbital timescale 70 

precipitation variations of the middle Piacenzian, we collected bulk samples at 5 cm 71 

intervals for magnetic susceptibility analysis in September 2014. The good match 72 

between new magnetic susceptibility data and previous magnetic susceptibility data [22] 73 

in the Chaona section provides the age control points for establishing the age model of 74 

resampling Chaona section (Fig. S1). Based on the 8 age control points, we obtain the 75 

initial age model of new magnetic susceptibility data through piecewise linear 76 

interpolation. 77 

2.3. Establishing the orbitally-tuned age model for the Chaona sections 78 

The strong 20-ka cycles in the χfd/HIRM record and the similar pattern with 79 

insolation provide an opportunity to improve the precision of the age model from each 80 

section (Fig. S3f). Only minimal tuning was needed for each section (Fig. S2b). We note 81 

that the observed precipitation cyclicities and their comparison with insolation and ice 82 

sheet records are consistent between the paleomagnetic age model and the tuned age 83 

model (Fig. S2), indicating that tuning does not influence the results. 84 

 85 



 
 

 86 

Fig. S1. The age control points for tuning the Chaona magnetic susceptibility. The right 87 

side is the new Chaona magnetic susceptibility data with depth and the left side is the 88 

previous Chaona magnetic susceptibility with age model [22]. χlf: Magnetic 89 

susceptibility at low frequency. 90 
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 94 

Fig. S2. A comparison of Chaona precipitation proxy record with June insolation 95 

gradient and benthic oxygen isotope stack. (a) and (e) χfd/HIRM and June insolation 96 

gradient [7]. (b) and (f) χfd/HIRM and June insolation gradient at filtered 20-ka band. (c) 97 

and (g) χfd/HIRM and benthic δ18O stack [9] at filtered 40-ka band. (d) and (h) χfd/HIRM 98 

and benthic δ18O stack. (b) show how the orbital tuning was done for Chaona section: 99 

green points in (b) were tuned to the closest insolation reference points (blue points). 100 

(a), (b), (c) and (d) show the results before tuned and (e), (f), (g) and (h) show the results 101 



 
 

after tuned. The 20-ka central frequency = 0.05 ka-1 and bandwidth = 0.012 ka-1. The 102 

40-ka central frequency = 0.024 ka-1 and bandwidth = 0.004 ka-1. 103 

 104 

 105 

 106 

Fig. S3. Chaona paleoclimate records and comparison with June insolation gradient and 107 

benthic oxygen isotope stack based on paleomagnetic dating. (a) June insolation 108 

gradient [7]. (b) Chaona χfd/HIRM. (c) Chaona χlf.. (d) Benthic δ18O stack [9]. (e)-(h) 109 

Power spectra of (a)-(d), respectively. The grey bands highlight the intervals where 110 

χfd/HIRM peaks correspond to June insolation gradient maxima. The pink bands 111 

highlight the complex relationship between χfd/HIRM, benthic δ18O, and insolation 112 

gradient. The y axes of the spectral plots are in log 10 scale. 113 
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 116 

Fig. S4. Chaona paleoclimate records and comparison with June insolation at 30°N and 117 

benthic oxygen isotope stack based on orbitally-tuned age model. (a) June insolation at 118 

30°N [7]. (b) Chaona χfd/HIRM. (c) Chaona χlf.. (d) Benthic δ18O stack [9]. (e)-(h) Power 119 

spectra of (a)-(d), respectively. The grey bands highlight the intervals where χfd/HIRM 120 

peaks correspond to June insolation maxima. The pink bands highlight the complex 121 

relationship between χfd/HIRM, benthic δ18O, and June insolation at 30°N. The y axes 122 

of the spectral plots are in log 10 scale. 123 
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Fig. S5. Comparison of χfd/HIRM from Chaona section with June insolation gradient 126 

and their cross-spectral results based on orbitally-tuned age model. (a)-(c) Comparison 127 

of χfd/HIRM from Chaona section with June insolation gradient [7] and their filtered 128 

results at 20-ka and 40-ka bands. (d) Cross-spectral comparison of χfd/HIRM and June 129 

insolation gradient. The power spectral is plotted on log scale. The coherence is plotted 130 

on an arctanh scale (80% = 0.749). The grey bands show the dominant orbital cycles. 131 

At the 40-ka band, χfd/HIRM and June insolation gradient are out of phase. This cross-132 

spectral analysis was based on ARAND Time-Series Analysis Software [23]. The 20-133 

ka central frequency = 0.05 ka-1 and bandwidth = 0.012 ka-1. The 40-ka central 134 

frequency = 0.024 ka-1 and bandwidth = 0.004 ka-1. 135 

 136 

 137 

Fig. S6. Comparison of Loess Plateau χfd/HIRM with hypothesized insolation and ice 138 

sheet forcing stack based on orbitally-tuned age model. To produce the hypothesized 139 

forcing stack, we first normalized the June insolation gradient record and the benthic 140 

oxygen isotope record, then we multiplied the normalized benthic oxygen isotope record 141 

by 1.2 and added it with the normalized insolation record (hereafter forcing stack). (a) 142 

Comparison of Chaona χfd/HIRM with forcing stack. (c) The power spectral of (a), 143 

respectively. The y axes of the spectral plots are in log 10 scale. 144 
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