CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
unknown
Large-scale drainage capture and surface uplift in eastern Tibet–SW China before 24 Ma inferred from sediments of the Hanoi Basin, Vietnam
Authors
Anh Duc Nguyen
Brookfield
+29 more
Clark
Clark
Clift
Clift
Clift
Clift
Debon
DePaolo
England
Garzione
Gilder
Gilley
Goldstein
Hall
Hamilton
Jerzy Blusztajn
Lan
Leloup
Li
Ma
Metcalfe
Peltzer
Peter D. Clift
Rangin
Rowley
Royden
Schoenbohm
Spicer
Wang
Publication date
10 October 2006
Publisher
'American Geophysical Union (AGU)'
Doi
Abstract
Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L19403, doi:10.1029/2006GL027772.Current models of drainage evolution suggest that the non-dendritic patterns seen in rivers in SE Asia reflect progressive capture of headwaters away from the Red River during and as a result of surface uplift of Eastern Asia. Mass balancing of eroded and deposited rock volumes demonstrates that the Red River catchment must have been much larger in the past. In addition, the Nd isotope composition of sediments from the Hanoi Basin, Vietnam, interpreted as paleo-Red River sediments, shows rapid change during the Oligocene, before ∼24 Ma. We interpret this change to reflect large-scale drainage capture away from the Red River, possibly involving loss of the middle Yangtze River. Reorganization was triggered by regional tilting of the region towards the east. This study constrains initial surface uplift in eastern Tibet and southwestern China to be no later than 24 Ma, well before major surface uplift and gorge incision after 13 Ma
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 08/06/2012
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 05/06/2019