40 research outputs found

    InternationaCommunications Satellite Systems Conference Speaking Notes

    Get PDF
    Speaking notes at the plenary session of the International Communications Satellite Systems Conference Montreal, Canad

    Proposition de critères servant à la sélection des enseignants du secondaire qui interviennent en milieu institutionnel

    Get PDF
    Québec Université Laval, Bibliothèque 201

    Quantification of peatland water storage capacity using the water table fluctuation method

    Get PDF
    Peat specific yield (Sy) is an important parameter involved in many peatland hydrological functions such as flood attenuation, baseflow contribution to rivers, and maintaining groundwater levels in surficial aquifers. However, general knowledge on peatland water storage capacity is still very limited, due in part to the technical difficulties related to in situ measurements. The objectives of this study were to quantify vertical Sy variations of water tables in peatlands using the water table fluctuation (WTF) method and to better understand the factors controlling peatland water storage capacity. The method was tested in five ombrotrophic peatlands located in the St. Lawrence Lowlands (southern Québec, Canada). In each peatland, water table wells were installed at three locations (up-gradient, mid-gradient, and down-gradient). Near each well, a 1-m long peat core (8 cm × 8 cm) was sampled, and subsamples were used to determine SY with standard gravitational drainage method. A larger peat sample (25 cm × 60 cm × 40 cm) was also collected in one peatland to estimate Sy using a laboratory drainage method. In all sites, the mean water table depth ranged from 9 to 49 cm below the peat surface, with annual fluctuations varying between 15 and 29 cm for all locations. The WTF method produced similar results to the gravitational drainage experiments, with values ranging between 0.13 and 0.99 for the WTF method and between 0.01 and 0.95 for the gravitational drainage experiments. Sy was found to rapidly decrease with depth within 20 cm, independently of the within-site location and the mean annual water table depth. Dominant factors explaining Sy variations were identified using analysis of variance. The most important factor was peatland site, followed by peat depth and seasonality. Variations in storage capacity considering site and seasonality followed regional effective growing degree days and evapotranspiration patterns. This work provides new data on spatial variations of peatland water storage capacity using an easily implemented method that requires only water table measurements and precipitation data

    Designing multiplayer games to facilitate emergent social behaviours online

    Get PDF
    This paper discusses an exploratory case study of the design of games that facilitate spontaneous social interaction and group behaviours among distributed individuals, based largely on symbolic presence 'state' changes. We present the principles guiding the design of our game environment: presence as a symbolic phenomenon, the importance of good visualization and the potential for spontaneous self-organization among groups of people. Our game environment, comprising a family of multiplayer 'bumper-car' style games, is described, followed by a discussion of lessons learned from observing users of the environment. Finally, we reconsider and extend our design principles in light of our observations

    Combining feature fusion and decision fusion for classification of hyperspectral and LiDAR data

    Get PDF
    This paper proposes a method to combine feature fusion and decision fusion together for multi-sensor data classification. First, morphological features which contain elevation and spatial information, are generated on both LiDAR data and the first few principal components (PCs) of original hyperspectral (HS) image. We got the fused features by projecting the spectral (original HS image), spatial and elevation features onto a lower subspace through a graph-based feature fusion method. Then, we got four classification maps by using spectral features, spatial features, elevation features and the graph fused features individually as input of SVM classifier. The final classification map was obtained by fusing the four classification maps through the weighted majority voting. Experimental results on fusion of HS and LiDAR data from the 2013 IEEE GRSS Data Fusion Contest demonstrate effectiveness of the proposed method. Compared to the methods using single data source or only feature fusion, with the proposed method, overall classification accuracies were improved by 10% and 2%, respectively

    Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin

    Get PDF
    The carbon catabolite repressor protein 4 (Ccr4)–Negative on TATA (Not) complex controls gene expression at two levels. In the nucleus, it regulates the basal transcription machinery, nuclear receptor-mediated transcription and histone modifications. In the cytoplasm, the complex is required for messenger RNA (mRNA) turnover through its two associated deadenylases, Ccr4 and Caf1. Not1 is the largest protein of the Ccr4–Not complex and serves as a scaffold for other subunits of the complex. Here, we provide evidence that human Not1 in the cytoplasm associates with the C-terminal domain of tristetraprolin (TTP), an RNA binding protein that mediates rapid degradation of mRNAs containing AU-rich elements (AREs). Not1 shows extensive interaction through its central region with TTP, whereas binding of Caf1 is restricted to a smaller central domain within Not1. Importantly, Not1 is required for the rapid decay of ARE-mRNAs, and TTP can recruit the Caf1 deadenylase only in presence of Not1. Thus, cytoplasmic Not1 provides a platform that allows a specific RNA binding protein to recruit the Caf1 deadenylase and thereby trigger decay of its target mRNAs

    CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs

    Get PDF
    Mitochondria are essential organelles that host crucial metabolic pathways and produce adenosine triphosphate. The mitochondrial proteome is heterogeneous among tissues and can dynamically change in response to different metabolic conditions. Although the transcriptional programs that govern mitochondrial biogenesis and respiratory function are well known, posttranscriptional regulatory mechanisms remain unclear. In this study, we show that the cytosolic RNA-binding protein clustered mitochondria homologue (CLUH) regulates the expression of a mitochondrial protein network supporting key metabolic programs required under nutrient deprivation. CLUH exerts its function by controlling the stability and translation of target messenger RNAs. In the absence of Cluh, mitochondria are severely depleted of crucial enzymes involved in catabolic energy-converting pathways. CLUH preserves oxidative mitochondrial function and glucose homeostasis, thus preventing death at the fetal–neonatal transition. In the adult liver, CLUH ensures maximal respiration capacity and the metabolic response to starvation. Our results shed new light on the posttranscriptional mechanisms controlling the expression of mitochondrial proteins and suggest novel strategies to tailor mitochondrial function to physiological and pathological conditions.Peer reviewe

    Microsporidia::Why Make Nucleotides if You Can Steal Them?

    Get PDF
    Microsporidia are strict obligate intracellular parasites that infect a wide range of eukaryotes including humans and economically important fish and insects. Surviving and flourishing inside another eukaryotic cell is a very specialised lifestyle that requires evolutionary innovation. Genome sequence analyses show that microsporidia have lost most of the genes needed for making primary metabolites, such as amino acids and nucleotides, and also that they have only a limited capacity for making adenosine triphosphate (ATP). Since microsporidia cannot grow and replicate without the enormous amounts of energy and nucleotide building blocks needed for protein, DNA, and RNA biosynthesis, they must have evolved ways of stealing these substrates from the infected host cell. Providing they can do this, genome analyses suggest that microsporidia have the enzyme repertoire needed to use and regenerate the imported nucleotides efficiently. Recent functional studies suggest that a critical innovation for adapting to intracellular life was the acquisition by lateral gene transfer of nucleotide transport (NTT) proteins that are now present in multiple copies in all microsporidian genomes. These proteins are expressed on the parasite surface and allow microsporidia to steal ATP and other purine nucleotides for energy and biosynthesis from their host. However, it remains unclear how other essential metabolites, such as pyrimidine nucleotides, are acquired. Transcriptomic and experimental studies suggest that microsporidia might manipulate host cell metabolism and cell biological processes to promote nucleotide synthesis and to maximise the potential for ATP and nucleotide import. In this review, we summarise recent genomic and functional data relating to how microsporidia exploit their hosts for energy and building blocks needed for growth and nucleic acid metabolism and we identify some remaining outstanding questions

    From Sea to Sea: Canada's Three Oceans of Biodiversity

    Get PDF
    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a biodiversity baseline for a new program on marine biodiversity, the Canadian Healthy Ocean Network. A major effort needs to be undertaken to establish a complete baseline of Canadian marine biodiversity of all taxonomic groups, especially if we are to understand and conserve this part of Canada's natural heritage

    The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

    Full text link
    corecore