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ABSTRACT

This paper proposes a method to combine feature fusion and
decision fusion together for multi-sensor data classification.
First, morphological features which contain elevation and
spatial information, are generated on both LiDAR data and
the first few principal components (PCs) of original hyper-
spectral (HS) image. We got the fused features by projecting
the spectral (original HS image), spatial and elevation fea-
tures onto a lower subspace through a graph-based feature
fusion method. Then, we got four classification maps by
using spectral features, spatial features, elevation features
and the graph fused features individually as input of SVM
classifier. The final classification map was obtained by fusing
the four classification maps through the weighted majority
voting. Experimental results on fusion of HS and LiDAR
data from the 2013 IEEE GRSS Data Fusion Contest demon-
strate effectiveness of the proposed method. Compared to the
methods using single data source or only feature fusion, with
the proposed method, overall classification accuracies were
improved by 10% and 2%, respectively.

Index Terms— Data fusion, remote sensing, hyperspec-
tral image, LiDAR data, graph-based

1. INTRODUCTION

Nowadays, advanced sensor technologies allow us to mea-
sure different aspects of the objects on the Earth’s surface,
from spectral characteristics in hyperspectral (HS) images, to
height information in Light Detection And Ranging (LiDAR)
data. It is clear that HS or LiDAR data alone might not be
sufficient to obtain reliable classification results in a complex
urban context. Instead, the combination of both data sources
can contribute to a more comprehensive interpretation of the
ground objects. For example, spectral signatures cannot dif-
ferentiate between objects made of the same material (e.g.
roofs and roads made with the same asphalt), while the latter
may be easily distinguished by their altitude. On the other
hand, LiDAR data alone may fail to discriminate between ob-
jects that are quite different in nature (e.g. grass field and
swimming pool), but similar in their altitude.

Due to the increased availability of HS and LiDAR data
from the same area, the fusion of these remote sensing data

Fig. 1: Proposed data fusion framework.

have been of great interest for many practical applications
[1, 3, 4]. Lemp and Weidner [1] exploit HS and LiDAR data
for the classification of urban areas, using LiDAR for the seg-
mentation of the scene, and then HS data for the classifica-
tion of the resulting regions. The joint use of HS and LiDAR
remote sensing data for the classification of complex forest
areas was investigated in [3]. They proposed a novel clas-
sification system, based on different possible classifiers that
were able to properly integrate multi-sensor information. The
very recent method [4] applied morphological attribute pro-
files (EAPs) [5] to both HS and LiDAR data for a classifi-
cation task. Their method jointly considered the features ex-
tracted by EAPs computed on both HS and LiDAR data, and
fused spectral, spatial and elevation information in a stacked
architecture. However, stacking too many features from dif-
ferent data sources may lead to the problem of the curse of
dimensionality and excessive computation time [2]. Further-
more, the performances by simply stacking several feature
sources together are not always better than using single fea-
ture source. This is because the information contained by
different feature sources is not equally represented or mea-
sured. Our previous approach overcame these problems by
fusing multi-sensor data through a fusion graph [6], and won
the “Best Paper Challenge” of the 2013 IEEE GRSS Data Fu-
sion Contest.

In this paper, we propose a method to combine feature fu-
sion and decision fusion together for multi-sensor data classi-
fication in Fig.1. First, morphological features which contain
elevation and spatial information, are generated on both Li-
DAR data and the first few principal components (PCs) of
original HS image. We got the fused features by project-
ing the spectral, spatial and elevation features onto a lower
subspace through our graph-based feature fusion method [6].
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Then, we used spectral features, spatial features, elevation
features and the graph fused features (GFF) individually as
inputs of SVM classifier to generate four classification maps.
The final classification map was obtained by fusing all the
classification maps through the weighted majority voting [7].

2. METHODOLOGY

2.1. Morphological features of HS image and LiDAR data

Morphological features are generated by either applying mor-
phological openings or closings by reconstruction on the im-
age, using a structural element (SE) of predefined size and
shape. For example, the morphological profile (MP) with
disk SE carry information about the minimum size of objects,
whereas directional MP indicate of the maximum size of ob-
jects [8]. An opening acts on bright objects (for LiDAR data,
the bright regions are actually areas with the high elevation,
such as the top of the roof) compared with their surrounding,
while closings act on dark (low height in the LiDAR data)
objects. For example, an opening deletes bright objects that
are smaller than the SE. By increasing the size of the SE and
repeating the previous operation, a complete morphological
profile (MP) is built, carrying information about the size and
the shape of objects in the image.

In our experiments, morphological features are generated
by applying morphological openings and closings with partial
reconstruction on both LiDAR data and the first 2 principal
components (PCs) (representing more than 99% of the cumu-
lative variance) of original HS image. The effect of using
morphological features with partial reconstruction for clas-
sification of remote sensing data from urban areas has been
discussed in our previous work [8, 10]. For disk-shaped SE,
MPs with 15 openings and closings (ranging from 1 to 15
with step size increment of 1) are computed for both LiDAR
data and the first 2 PCs of HS image. For linear structuring
elements, MPs with 20 openings and closings (ranging from 5
to 100 with step size increment of 5) are constructed for both
LiDAR data and the first 2 PCs of HS image.

2.2. Graph-based Feature Fusion Method

Using single data source may not be sufficient for a reliable
classification, but combining many of them can lead to prob-
lems like the curse of dimensionality, excessive computation
time and so on. Before fusing all the feature sources, we nor-
malized their dimensions and reduce the noise throughout the
given feature space with Kernel Principal Component Anal-
ysis (KPCA) [9, 10], the same as we did in [6]. We assume
the dimension of each feature source is already normalized
to the smallest dimension of all the feature sources D = 70.
Let XSpe = {xSpe

i }ni=1, XSpa = {xSpa
i }ni=1 and XEle =

{xEle
i }ni=1, where xSpe

i ∈ <D, xSpa
i ∈ <D and xEle

i ∈
<D denote the dimensional normalized features of spectral,

spatial and elevation, respectively. XSta = {xSta
i }ni=1 =

[XSpe;XSpa;XEle], and xSta
i = [xSpe

i ; xSpa
i ; xEle

i ] ∈ <3D

denotes the vector stacked by the features of spectral, spatial
and altitude.

We first build a graph for each feature source, for exam-
ple, the graph constructed by spectral features (i.e., GSpe =
(XSpe,ASpe)), where ASpe represents the edges of the graph.
The edge between data point xSpe

i and xSpe
j is here denoted

as ASpe
ij ∈ {0, 1}; ASpe

ij = 1 if xSpe
i and xSpe

j are “close” and
xSpe
i and xSpe

j are “far apart”. The “close” is defined as be-
longing to k nearest neighbors (kNN) of the other data points.
The kNNs of the data point xSpe

i are its k nearest neighbors
in terms of spectral signatures. On the other hand, when the
graph is constructed by spatial features, the kNNs of the data
point xSpa

i are its k nearest neighbors in terms of spatial char-
acteristics; whereas the kNNs of xEle

i are its k nearest neigh-
bors in terms of elevation characteristics. We define a fusion
graph GFus = (XSta,AFus), where:

AFus = ASpe � ASpa � AEle (1)

The operator ‘�’ denotes element-by-element multiplication,
i.e. AFus

i,j = ASpe
i,j ∗A

Spa
i,j ∗AEle

i,j . This means the stacked data
points xSta

i and xSta
j are connected only if they have similar

on all spectral, spatial and elevation characteristics, for more
details to obtain the fused features, we refer the readers to our
recent work [6].

2.3. Decision Fusion-based classification

Fig. 1 shows the framework of our proposed decision fusion.
After fusing spectral, spatial and elevation features on fea-
ture level, we use single feature source (spectral, spatial and
elevation feature individually) and the fused features indepen-
dently as input of SVM classifiers to generate four classifica-
tion maps. In real applications, it is impossible to get a fully
certain and complete classification map. Therefore it is neces-
sary to weight each of the outputs (classification maps) so that
the final ensemble reflects our knowledge of the reliability. In
other words, one can assign different weights to different out-
puts in order to achieve a more satisfactory final classification
map. One simple way to adjust the contribution of each out-
put is to apply the weighted majority voting [7]. The choice
of classifiers weighting factors will have a significant effect
on the results of the classification because the contribution of
each output will be reduced or enhanced in proportion to its
weight. This paper employs overall classification accuracy to
measure the classifiers weighting parameters.

3. EXPERIMENTAL RESULTS

Experiments are done on a hyperspectral image and a Li-
DAR data which were acquired by the NSF-funded Center for
Airborne Laser Mapping (NCALM) [11] on June 2012 over



the University of Houston campus and the neighboring urban
area. The hyperspectral imagery has 144 spectral bands with
wavelength range from 380 nm to 1050 nm. Both the data
have the same spatial resolution (2.5m). The whole scene of
both the data, consisting of the full 349 × 1905 pixels, con-
tains 15 classes, Fig. 2 shows an RGB composition.

The SVM classifier with radial basis function (RBF) ker-
nels is applied in our experiments. The parameters of SVM
classifier are set the same as in our previous work [6]. We
compare our proposed methods with the schemes of (1) Only
using spectral information (Original HSI); (2) Using the MPs
computed on the first 2 PCs of HS image (MPsHSI ); (3)
Using the MPs computed on the LiDAR data (MPsLiDAR);
(4) Using the features fused by using our previous method
in [6]. The classification results are quantitatively evaluated
by measuring the Overall Accuracy (OA), the Average Ac-
curacy (AA) and the Kappa coefficient (κ). Table 1 shows
the accuracies values obtained from the experiments, Fig. 2
shows the classification maps.

It can be found that using single feature source is not suf-
ficient for a reliable classification. Each feature source has its
advantages on different classes. For examples, spectral fea-
tures are good to discriminate some natural materials such as
grass and tree, while spatial and elevation features are bet-
ter on some man-made objects, of which LiDAR are better
on some big objects with similar elevation (e.g. commercial
and highway). Our previous method couple dimension re-
duction and data fusion together, with higher accuracies but
less features than using single feature source. However, we
can see that some classes from using the fused features have
lower accuracies even than using single feature source, such
as ‘Grass Healthy’ and ‘Road’. By combining feature fusion
and decision fusion, our proposed method performs better
than the other schemes, with 10.14%-23.18% and 2.27% im-
provements in OA than using single feature source and only
feature fusion, respectively.

4. CONCLUSION

The contribution of this paper is a methodology to combine
feature fusion and decision fusion together for the multi-
sensor data classification. The morphological features with
partial reconstruction, which carry the spatial and elevation
information, are first generated on both the first PCs of HS
image and LiDAR data. We got the fused features by pro-
jecting the spectral, spatial and elevation features onto a
lower subspace through a graph-based feature fusion method.
Then, we got four classification maps by using spectral fea-
tures, spatial features, elevation features and the graph fused
features individually as inputs of SVM classifier. We generate
the final classification map by fusing the four classification
maps through the weighted majority voting. Experimental
results on the classification of the real HS and LiDAR data
show the efficiency of the proposed method.
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Table 1: Classification accuracies obtained by the described schemes.
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