196 research outputs found
A Piezoresistive Array Armband With Reduced Number of Sensors for Hand Gesture Recognition
Human machine interfaces (HMIs) are employed in a broad range of applications, spanning from assistive devices for disability to remote manipulation and gaming controllers. In this study, a new piezoresistive sensors array armband is proposed for hand gesture recognition. The armband encloses only three sensors targeting specific forearm muscles, with the aim to discriminate eight hand movements. Each sensor is made by a force-sensitive resistor (FSR) with a dedicated mechanical coupler and is designed to sense muscle swelling during contraction. The armband is designed to be easily wearable and adjustable for any user and was tested on 10 volunteers. Hand gestures are classified by means of different machine learning algorithms, and classification performances are assessed applying both, the 10-fold and leave-one-out cross-validations. A linear support vector machine provided 96% mean accuracy across all participants. Ultimately, this classifier was implemented on an Arduino platform and allowed successful control for videogames in real-time. The low power consumption together with the high level of accuracy suggests the potential of this device for exergames commonly employed for neuromotor rehabilitation. The reduced number of sensors makes this HMI also suitable for hand-prosthesis control
How future surgery will benefit from SARS-COV-2-related measures: a SPIGC survey conveying the perspective of Italian surgeons
COVID-19 negatively affected surgical activity, but the potential benefits resulting from adopted measures remain unclear. The aim of this study was to evaluate the change in surgical activity and potential benefit from COVID-19 measures in perspective of Italian surgeons on behalf of SPIGC. A nationwide online survey on surgical practice before, during, and after COVID-19 pandemic was conducted in March-April 2022 (NCT:05323851). Effects of COVID-19 hospital-related measures on surgical patients' management and personal professional development across surgical specialties were explored. Data on demographics, pre-operative/peri-operative/post-operative management, and professional development were collected. Outcomes were matched with the corresponding volume. Four hundred and seventy-three respondents were included in final analysis across 14 surgical specialties. Since SARS-CoV-2 pandemic, application of telematic consultations (4.1% vs. 21.6%; p < 0.0001) and diagnostic evaluations (16.4% vs. 42.2%; p < 0.0001) increased. Elective surgical activities significantly reduced and surgeons opted more frequently for conservative management with a possible indication for elective (26.3% vs. 35.7%; p < 0.0001) or urgent (20.4% vs. 38.5%; p < 0.0001) surgery. All new COVID-related measures are perceived to be maintained in the future. Surgeons' personal education online increased from 12.6% (pre-COVID) to 86.6% (post-COVID; p < 0.0001). Online educational activities are considered a beneficial effect from COVID pandemic (56.4%). COVID-19 had a great impact on surgical specialties, with significant reduction of operation volume. However, some forced changes turned out to be benefits. Isolation measures pushed the use of telemedicine and telemetric devices for outpatient practice and favored communication for educational purposes and surgeon-patient/family communication. From the Italian surgeons' perspective, COVID-related measures will continue to influence future surgical clinical practice
Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC
Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe
A simple, wide bandwidth, biopotential amplifier to record pacemaker pulse waveform
Reliable detection of pacemaker pulses is getting more and more important in electrocardiography (ECG) diagnosis. Many studies recommend ECG amplifiers with higher bandwidth to prevent errors. In the past, few pilot studies showed that analysis of pacemaker pulses waveform can enhance diagnosis (eg, lead failure and fractured wire), but they were carried out with inadequate instrumentations for clinical practice. Typically, pacemaker pulses last hundreds of microseconds, edges of pulses elapse in few microseconds, and amplitude may exhibit large variations from few millivolts to volts. Pulse waveforms change often and depend on pacemaker type and programming. A simple, biopotential amplifier made of a few off-the-shelf components is proposed. The circuit fulfills specifications for biopotential amplifiers and offers a large bandwidth (~1 MHz). Therefore, it is able to accurately record time course of pacemaker pulses and allows highly accurate pulse detection and timing. Signals can be easily displayed and acquired by means of a standard, battery-powered oscilloscope. Pacemaker pulse vectorcardiography can be obtained by using two or more, wideband channels. Some exemplificative waveforms recorded during patient’s periodic medical examination are reported. The proposed circuit offers simultaneous conventional ECG signal as an additional output
Detection of Aortic Valve Opening and Estimation of Pre-Ejection Period in Forcecardiography Recordings
Forcecardiography (FCG) is a novel technique that measures the local forces induced on the chest wall by the mechanical activity of the heart. Specific piezoresistive or piezoelectric force sensors are placed on subjects’ thorax to measure these very small forces. The FCG signal can be divided into three components: low-frequency FCG, high-frequency FCG (HF-FCG) and heart sound FCG. HF-FCG has been shown to share a high similarity with the Seismocardiogram (SCG), which is commonly acquired via small accelerometers and is mainly used to locate specific fiducial markers corresponding to essential events of the cardiac cycle (e.g., heart valves opening and closure, peaks of blood flow). However, HF-FCG has not yet been demonstrated to provide the timings of these markers with reasonable accuracy. This study addresses the detection of the aortic valve opening (AO) marker in FCG signals. To this aim, simultaneous recordings from FCG and SCG sensors were acquired, together with Electrocardiogram (ECG) recordings, from a few healthy subjects at rest, both during quiet breathing and apnea. The AO markers were located in both SCG and FCG signals to obtain pre-ejection periods (PEP) estimates, which were compared via statistical analyses. The PEPs estimated from FCG and SCG showed a strong linear relationship (r > 0.95) with a practically unit slope, and 95% of their differences were found to be distributed within ± 4.6 ms around small biases of approximately 1 ms, corresponding to percentage differences lower than 5% of the mean measured PEP. These preliminary results suggest that FCG can provide accurate AO timings and PEP estimates
Real-time EMG based pattern recognition control for hand prostheses: A review on existing methods, challenges and future implementation
Upper limb amputation is a condition that significantly restricts the amputees from performing their daily activities. The myoelectric prosthesis, using signals from residual stump muscles, is aimed at restoring the function of such lost limbs seamlessly. Unfortunately, the acquisition and use of such myosignals are cumbersome and complicated. Furthermore, once acquired, it usually requires heavy computational power to turn it into a user control signal. Its transition to a practical prosthesis solution is still being challenged by various factors particularly those related to the fact that each amputee has different mobility, muscle contraction forces, limb positional variations and electrode placements. Thus, a solution that can adapt or otherwise tailor itself to each individual is required for maximum utility across amputees. Modified machine learning schemes for pattern recognition have the potential to significantly reduce the factors (movement of users and contraction of the muscle) affecting the traditional electromyography (EMG)-pattern recognition methods. Although recent developments of intelligent pattern recognition techniques could discriminate multiple degrees of freedom with high-level accuracy, their efficiency level was less accessible and revealed in real-world (amputee) applications. This review paper examined the suitability of upper limb prosthesis (ULP) inventions in the healthcare sector from their technical control perspective. More focus was given to the review of real-world applications and the use of pattern recognition control on amputees. We first reviewed the overall structure of pattern recognition schemes for myo-control prosthetic systems and then discussed their real-time use on amputee upper limbs. Finally, we concluded the paper with a discussion of the existing challenges and future research recommendations
Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV
The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number
Post-operative outcomes and quality of life assessment after thoracoscopic lobectomy for Non-small-cell lung cancer in octogenarians: Analysis from a national database
Background: Thoracoscopic lobectomy (VATS-L) for non-small-cell lung cancer (NSCLC) is a well-established option for early stage NSCLC, but the evidences are limited for octogenarians. Objective: The objectives of this multi-institutional study were to evaluate the post-operative outcomes of VATS-L in octogenarians and to estimate the post-operative quality of life (QoL) using a validated questionnaire (EuroQoL5D).
Methods: Data from patients underwent VATS-L between 2014 and 2019 were analysed and divided into two groups: Group A (younger patients) and Group B (octogenarians). To define predictors for complications, univariate and multivariable logistic regression analysis were performed.
Results: 7023 patients underwent VATS-L and 329 (4.6%) were octogenarians. 30-day and 90-day post-operative mortality were similar (0.95% vs 0.91%, p = 0.84 and 1.3% vs 1.2%, p = 0.58), whereas the percentage of patients who suffered from any complication (25.5% vs 31.9%, p = 0.012) and the complication rate (31.6% vs 45.2%, p=<0.01) were higher for octogenarians. At discharge, the values of EuroQoL5D were worse in group B, but after one month these levels became similar. Age >80 years had a significant influence on morbidity on both univariate and multivariable analyses (p = 0.025).
Conclusions: VATS-L for NSCLC can be performed in selected octogenarians without increased risk of post- operative death, acceptable not-life-threatening complications and a moderate impact on QoL
- …