765 research outputs found

    The effect of dynamical scattering on single-plane phase retrieval in electron ptychography

    Get PDF
    Segmented and pixelated detectors on scanning transmission electron microscopes enable the complex specimen transmission function to be reconstructed. Imaging the transmission function is key to interpreting the electric and magnetic properties of the specimen, and as such four-dimensional scanning transmission electron microscopy (4D-STEM) imaging techniques are crucial for our understanding of functional materials. Many of the algorithms used in the reconstruction of the transmission function rely on the multiplicative approximation and the (weak) phase object approximation, which are not valid for many materials, particularly at high resolution. Herein, we study the breakdown of simple phase imaging in thicker samples. We demonstrate the behavior of integrated center of mass imaging, single-side band ptychography, and Wigner distribution deconvolution over a thickness series of simulated GaN 4D-STEM datasets. We further give guidance as to the optimal focal conditions for obtaining a more interpretable dataset using these algorithms

    Conductivity and quasinormal modes in holographic theories

    Full text link
    We show that in field theories with a holographic dual the retarded Green's function of a conserved current can be represented as a convergent sum over the quasinormal modes. We find that the zero-frequency conductivity is related to the sum over quasinormal modes and their high-frequency asymptotics via a sum rule. We derive the asymptotics of the quasinormal mode frequencies and their residues using the phase-integral (WKB) approach and provide analytic insight into the existing numerical observations concerning the asymptotic behavior of the spectral densities.Comment: 24 pages, 3 figure

    PrP is a central player in toxicity mediated by soluble aggregates of neurodegeneration-causing proteins

    Get PDF
    Neurodegenerative diseases are an enormous public health problem, affecting tens of millions of people worldwide. Nearly all of these diseases are characterized by oligomerization and fibrillization of neuronal proteins, and there is great interest in therapeutic targeting of these aggregates. Here, we show that soluble aggregates of α-synuclein and tau bind to plate-immobilized PrP in vitro and on mouse cortical neurons, and that this binding requires at least one of the same N-terminal sites at which soluble AÎČ aggregates bind. Moreover, soluble aggregates of tau, α-synuclein and AÎČ cause both functional (impairment of LTP) and structural (neuritic dystrophy) compromise and these deficits are absent when PrP is ablated, knocked-down, or when neurons are pre-treated with anti-PrP blocking antibodies. Using an all-human experimental paradigm involving: (1) isogenic iPSC-derived neurons expressing or lacking PRNP, and (2) aqueous extracts from brains of individuals who died with Alzheimer's disease, dementia with Lewy bodies, and Pick's disease, we demonstrate that AÎČ, α-synuclein and tau are toxic to neurons in a manner that requires PrPC. These results indicate that PrP is likely to play an important role in a variety of late-life neurodegenerative diseases and that therapeutic targeting of PrP, rather than individual disease proteins, may have more benefit for conditions which involve the aggregation of more than one protein

    Neuronal circuitry for pain processing in the dorsal horn

    Get PDF
    Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region

    Growth hormone axis in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) in children is associated with dramatic changes in the growth hormone (GH) and insulin-like growth factor (IGF-1) axis, resulting in growth retardation. Moderate-to-severe growth retardation in CKD is associated with increased morbidity and mortality. Renal failure is a state of GH resistance and not GH deficiency. Some mechanisms of GH resistance are: reduced density of GH receptors in target organs, impaired GH-activated post-receptor Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and reduced levels of free IGF-1 due to increased inhibitory IGF-binding proteins (IGFBPs). Treatment with recombinant human growth hormone (rhGH) has been proven to be safe and efficacious in children with CKD. Even though rhGH has been shown to improve catch-up growth and to allow the child to achieve normal adult height, the final adult height is still significantly below the genetic target. Growth retardation may persist after renal transplantation due to multiple factors, such as steroid use, decreased renal function and an abnormal GH–IGF1 axis. Those below age 6 years are the ones to benefit most from transplantation in demonstrating acceleration in linear growth. Newer treatment modalities targeting the GH resistance with recombinant human IGF-1 (rhIGF-1), recombinant human IGFBP3 (rhIGFBP3) and IGFBP displacers are under investigation and may prove to be more effective in treating growth failure in CKD

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Retinal microvascular parameters are not associated with reduced renal function in a study of individuals with type 2 diabetes

    Get PDF
    Abstract The eye provides an opportunistic “window” to view the microcirculation. There is published evidence of an association between retinal microvascular calibre and renal function measured by estimated glomerular filtration rate (eGFR) in individuals with diabetes mellitus. Beyond vascular calibre, few studies have considered other microvascular geometrical features. Here we report novel null findings for measures of vascular spread (vessel fractal dimension), tortuosity, and branching patterns and their relationship with renal function in type 2 diabetes over a mean of 3 years. We performed a nested case-control comparison of multiple retinal vascular parameters between individuals with type 2 diabetes and stable (non-progressors) versus declining (progressors) eGFR across two time points within a subset of 1072 participants from the GoDARTS study cohort. Retinal microvascular were measured using VAMPIRE 3.1 software. In unadjusted analyses and following adjustment for age, gender, systolic blood pressure, HbA1C, and diabetic retinopathy, no associations between baseline retinal vascular parameters and risk of eGFR progression were observed. Cross-sectional analysis of follow-up data showed a significant association between retinal arteriolar diameter and eGFR, but this was not maintained following adjustment. These findings are consistent with a lack of predictive capacity for progressive loss of renal function in type 2 diabetes
    • 

    corecore