1,490 research outputs found
Goldstini Can Give the Higgs a Boost
Supersymmetric collider phenomenology depends crucially on whether the
lightest observable-sector supersymmetric particle (LOSP) decays, and if so,
what the LOSP decay products are. For instance, in SUSY models where the
gravitino is lighter than the LOSP, the LOSP decays to its superpartner and a
longitudinal gravitino via supercurrent couplings. In this paper, we show that
LOSP decays can be substantially modified when there are multiple sectors that
break supersymmetry, where in addition to the gravitino there are light uneaten
goldstini. As a particularly striking example, a bino-like LOSP can have a near
100% branching fraction to a higgs boson and an uneaten goldstino, even if the
LOSP has negligible higgsino fraction. This occurs because the uneaten
goldstino is unconstrained by the supercurrent, allowing additional operators
to mediate LOSP decay. These operators can be enhanced in the presence of an R
symmetry, leading to copious boosted higgs production in SUSY cascade decays.Comment: 30 pages, 12 figures; v2: title change, clarifications added, version
to appear in JHE
Flavored Gauge-Mediation
The messengers of Gauge-Mediation Models can couple to standard-model matter
fields through renormalizable superpotential couplings. These matter-messenger
couplings generate generation-dependent sfermion masses and are therefore
usually forbidden by discrete symmetries. However, the non-trivial structure of
the standard-model Yukawa couplings hints at some underlying flavor theory,
which would necessarily control the sizes of the matter-messenger couplings as
well. Thus for example, if the doublet messenger and the Higgs have the same
properties under the flavor theory, the resulting messenger-lepton couplings
are parametrically of the same order as the lepton Yukawas, so that slepton
mass-splittings are similar to those of minimally-flavor-violating models and
therefore satisfy bounds on flavor-violation, with, however, slepton mixings
that are potentially large. Assuming that fermion masses are explained by a
flavor symmetry, we construct viable and natural models with messenger-lepton
couplings controlled by the flavor symmetry. The resulting slepton spectra are
unusual and interesting, with slepton mass-splittings and mixings that may be
probed at the LHC. In particular, since the new contributions are typically
negative, and since they are often larger for the first- and second-generation
sleptons, some of these examples have the selectron or the smuon as the
lightest slepton, with mass splittings of a few to tens of GeV.Comment: 16 pages v2: Explicit expressions (which are not needed in the
analysis) for the pure Yukawa contributions removed. There was an error in
some of these expressions in v1. References adde
Non-global logarithms and jet algorithms in high-pT jet shapes
We consider jet-shape observables of the type proposed recently, where the
shapes of one or more high-pT jets, produced in a multi-jet event with definite
jet multiplicity, may be measured leaving other jets in the event unmeasured.
We point out the structure of the full next-to-leading logarithmic resummation
specifically including resummation of non-global logarithms in the leading-Nc
limit and emphasising their properties. We also point out differences between
jet algorithms in the context of soft gluon resummation for such observables.Comment: 22 pages, 4 figures. Title and a few words changed. Several typos
corrected. Version accepted by JHE
Electroweak Baryogenesis and Dark Matter with an approximate R-symmetry
It is well known that R-symmetric models dramatically alleviate the SUSY
flavor and CP problems. We study particular modifications of existing
R-symmetric models which share the solution to the above problems, and have
interesting consequences for electroweak baryogenesis and the Dark Matter (DM)
content of the universe. In particular, we find that it is naturally possible
to have a strongly first-order electroweak phase transition while
simultaneously relaxing the tension with EDM experiments. The R-symmetry (and
its small breaking) implies that the gauginos (and the neutralino LSP) are
pseudo-Dirac fermions, which is relevant for both baryogenesis and DM. The
singlet superpartner of the U(1)_Y pseudo-Dirac gaugino plays a prominent role
in making the electroweak phase transition strongly first-order. The
pseudo-Dirac nature of the LSP allows it to behave similarly to a Dirac
particle during freeze-out, but like a Majorana particle for annihilation today
and in scattering against nuclei, thus being consistent with current
constraints. Assuming a standard cosmology, it is possible to simultaneously
have a strongly first-order phase transition conducive to baryogenesis and have
the LSP provide the full DM relic abundance, in part of the allowed parameter
space. However, other possibilities for DM also exist, which are discussed. It
is expected that upcoming direct DM searches as well as neutrino signals from
DM annihilation in the Sun will be sensitive to this class of models.
Interesting collider and Gravity-wave signals are also briefly discussed.Comment: 50 pages, 10 figure
Sphalerons and the Electroweak Phase Transition in Models with Higher Scalar Representations
In this work we investigate the sphaleron solution in a
gauge theory, which also encompasses the Standard Model, with higher scalar
representation(s) (). We show that the field profiles
describing the sphaleron in higher scalar multiplet, have similar trends like
the doublet case with respect to the radial distance. We compute the sphaleron
energy and find that it scales linearly with the vacuum expectation value of
the scalar field and its slope depends on the representation. We also
investigate the effect of gauge field and find that it is small for the
physical value of the mixing angle, and resembles the case for the
doublet. For higher representations, we show that the criterion for strong
first order phase transition, , is relaxed with respect to
the doublet case, i.e. .Comment: 20 pages, 5 figures & 1 table, published versio
The Status of GMSB After 1/fb at the LHC
We thoroughly investigate the current status of supersymmetry in light of the
latest searches at the LHC, using General Gauge Mediation (GGM) as a
well-motivated signature generator that leads to many different simplified
models. We consider all possible promptly-decaying NLSPs in GGM, and by
carefully reinterpreting the existing LHC searches, we derive limits on both
colored and electroweak SUSY production. Overall, the coverage of GGM parameter
space is quite good, but much discovery potential still remains even at 7 TeV.
We identify several regions of parameter space where the current searches are
the weakest, typically in models with electroweak production, third generation
sfermions or squeezed spectra, and we suggest how ATLAS and CMS might modify
their search strategies given the understanding of GMSB at 1/fb. In particular,
we propose the use of leptonic to suppress backgrounds.
Because we express our results in terms of simplified models, they have broader
applicability beyond the GGM framework, and give a global view of the current
LHC reach. Our results on 3rd generation squark NLSPs in particular can be
viewed as setting direct limits on naturalness.Comment: 44 pages, refs added, typos fixed, improved MC statistics in fig 1
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Evidence for an excess of B -> D(*) Tau Nu decays
Based on the full BaBar data sample, we report improved measurements of the
ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or
mu. These ratios are sensitive to new physics contributions in the form of a
charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) =
0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0
sigma and 2.7 sigma, respectively. Taken together, our results disagree with
these expectations at the 3.4 sigma level. This excess cannot be explained by a
charged Higgs boson in the type II two-Higgs-doublet model. We also report the
observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the
format of Figure 2 and included the effect of the change of the Tau
polarization due to the charged Higg
- …
