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Abstract: Supersymmetric collider phenomenology depends crucially on whether the

lightest observable-sector supersymmetric particle (LOSP) decays, and if so, what the

LOSP decay products are. For instance, in SUSY models where the gravitino is lighter

than the LOSP, the LOSP decays to its superpartner and a longitudinal gravitino via super-

current couplings. In this paper, we show that LOSP decays can be substantially modified

when there are multiple sectors that break supersymmetry, where in addition to the grav-

itino there are light uneaten goldstini. As a particularly striking example, a bino-like LOSP

can have a near 100% branching fraction to a higgs boson and an uneaten goldstino, even

if the LOSP has negligible higgsino fraction. This occurs because the uneaten goldstino is

unconstrained by the supercurrent, allowing additional operators to mediate LOSP decay.

These operators can be enhanced in the presence of a U(1)R symmetry, leading to copious

boosted higgs production in SUSY cascade decays.
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Figure 1: A generic LOSP decay. We will focus on the case where λ is a bino-like LOSP, and ζ is

a (pseudo-)goldstino from spontaneous SUSY breaking. Contrary to the naive expectation, λ can

decay dominantly to higgs bosons, even if λ has negligible higgsino fraction.

1. Introduction

Supersymmetry (SUSY) is a well-motivated extension of the standard model (SM) with rich

phenomenological implications for collider experiments like the LHC. Most SUSY theories

consist of an “observable sector” coupled to one or more “hidden sectors.” The observable

sector contains the fields of the supersymmetric standard model (SSM), in particular the

lightest observable-sector supersymmetric particle (LOSP). The hidden sectors are respon-

sible for breaking SUSY and generating soft masses for SM superpartners, and may contain

light states accessible to colliders.

A typical SUSY collider event involves production of two heavy SM superpartners

which then undergo cascade decays to a pair of LOSPs. If there are hidden sector par-

ticles lighter than the LOSP, then the subsequent LOSP decays—if they occur inside the

detector—can dramatically impact SUSY collider phenomenology. The most well-known

example of a decaying LOSP is when the light hidden sector particle is a gravitino [1, 2, 3, 4].

In that case, the LOSP decays to its superpartner and a longitudinal gravitino via inter-

actions constrained by the conserved supercurrent and the goldstino equivalence theorem

[5, 6, 7, 8]. For example, a mostly bino LOSP will decay to a photon, Z, or—through its

small higgsino fraction—a higgs boson.

In this paper, we will show how changes in the couplings between the observable

and hidden sectors can have a dramatic impact on the decay modes of the LOSP, shown

generically in Fig. 1. Our case study will be a nearly pure bino LOSP λ with an order one

branching fraction to higgs bosons, a very counterintuitive decay pattern from the point of

view of the standard decay of a bino LOSP to a γ/Z plus a longitudinal gravitino. In fact,

in this example, the LOSP branching ratio to higgs bosons is enhanced with increasing

higgsino mass µ, approaching 100% in the small (mλ tanβ)/µ limit. This is unlike the case

of a higgsino LOSP, which generically has equal branching fractions to higgs and Z bosons.

These novel bino LOSP decays are possible in the presence of multiple sectors which

break supersymmetry, yielding a corresponding multiplicity of “goldstini” [9]. While the

couplings of the true goldstino (eaten by the gravitino) are constrained by the supercurrent,

the orthogonal uneaten goldstini can have different couplings from the naive expectation.

The spectrum of goldstini exhibits a number of fascinating properties [9, 10, 11], and they

may play a role in cosmology or dark matter [12, 13]. Here, we will focus on properties of
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Figure 2: The R-symmetric setup that will be the focus of this paper. Here, sector 1 has a

higher SUSY breaking scale than sector 2, i.e. F1 � F2, so the LOSP preferentially decays to the

pseudo-goldstino ζ coming mostly from sector 2. Since sector 2 preserves an R symmetry, the decay

λ→ γ/Z + ζ is highly suppressed, and the mode λ→ h0 + ζ can dominate.

goldstini relevant for their collider phenomenology.

For our case study, we consider two sectors which break SUSY, both of which commu-

nicate to the SSM, but one of which preserves an U(1)R symmetry, as in Fig. 2.1 For the

appropriate hierarchy of SUSY breaking scales, the LOSP will couple more strongly to the

uneaten goldstino ζ than to the longitudinal gravitino G̃L. Since the uneaten goldstino ζ

is charged under the U(1)R symmetry, the R-violating decay λ → γ/Z + ζ is suppressed,

letting the counterintuitive decay λ→ h0 + ζ dominate.2 This fascinating result is demon-

strated in Fig. 3.

In this way, goldstini can give the higgs a boost: a boost in production cross section

since most LOSP decays yield a higgs boson; and a boost in kinematics since the higgses are

produced with relatively large gamma factors in SUSY cascade decays. This example gives

further motivation to identify boosted higgses using jet substructure techniques [16, 17, 18].

This example also motivates searches for other counter-intuitive LOSP decay patterns,

where there is a mismatch between the identity of the LOSP and its decay products.

In the next section, we summarize and explain the main results of this paper. We then

describe the framework of goldstini in Sec. 3, and derive the low energy effective goldstini

interactions and resulting LOSP decay widths in Sec. 4. We explain in more detail why

the goldstini case differs from the more familiar gravitino case in Sec. 5. Plots of the LOSP

branching ratios appear in Sec. 6, and we conclude in Sec. 7. Various calculational details

are left to the appendices.

2. Counterintuitive LOSP Decays

Throughout this paper, we will be considering the situation where a LOSP decays to

a lighter neutral fermion as in Fig. 1, and we will assume the minimal SSM (MSSM)

1There have been recent studies where the entire SUSY breaking and SSM sectors preserve a U(1)R
symmetry [14, 15].

2In Ref. [9], it was erroneously claimed that in the presence of an R symmetry, the dominant decay is

λ→ ψψ̄ + ζ, where ψ is a SM fermion. This paper corrects that error.
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Figure 3: Branching ratio λ → h0 + ζ for a bino LOSP in the R-symmetric setup from Fig. 2.

Throughout this parameter space, the remaining branching ratio is dominated by λ → Z + ζ.

The expected mode λ → γ + ζ is almost entirely absent. Shown is Br(λ → h0ζ) as a function of

ε ≡ mλ tanβ/µ and γ ≡ tan−1(m̃2
Hu
/m̃2

Hd
), fixing tanβ = 5, M1 = 155 GeV, and mh0 = 120 GeV.

The plot terminates on the left and right side at the kinematic bound mλ < mh0 .

field content. The possible decay patterns of a LOSP are constrained by symmetries, at

minimum conservation of SM charges. In the familiar case where the LOSP decays to its

superpartner and a gravitino, there are further constraints imposed by conservation of the

supercurrent. We will see that these constraints can be significantly relaxed in the presence

of multiple SUSY breaking sectors.

2.1 A Conventional Goldstino

In the conventional setup with a single SUSY breaking sector and a light gravitino, the

couplings of the helicity-1/2 components of the gravitino are linked via the goldstino equiv-

alence theorem to the couplings of the goldstino G̃L. Supercurrent conservation implies

that, at leading order in the inverse SUSY breaking scale 1/F , the goldstino couples only

derivatively to observable sector fields via the supercurrent:

Leff = iG̃†Lσ̄
µ∂µG̃L +

1

F
∂µG̃Lj

µ, (2.1)

jµ = σν σ̄µψiDνφ
∗i − 1

2
√

2
σν σ̄ρσµλ†aF aνρ, (2.2)

where we have elided terms that vanish on the goldstino equation of motion. Here, φi is

a scalar and ψi is its fermionic superpartner, and F aµν is a gauge field strength with λa its

corresponding gaugino. In particular, the only possible LOSP decays are to its superpartner
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Figure 4: The standard decays of a bino-like LOSP to the longitudinal gravitino. They are

primarily to a photon or Z (left), though the bino may also decay to a higgs via its higgsino

component (right). The derivatives in Eq. (2.2) yield the Yukawa coupling labeled here, proportional

to the mass-squared difference of the on-shell bino and higgs. A cancellation between the two

possible intermediate higgsinos means the propagator contributes a factor of µ−2 to the amplitude

at leading order, leading to a very large suppression of this channel in the higgsino decoupling limit.

Feynman diagrams throughout follow the conventions of Ref. [19].

and a gravitino. This implies, for example, that a pure right-handed stau LOSP τ̃R can

only decay to a gravitino and a right-helicity tau τR, despite the fact that after electroweak

symmetry breaking, there is no symmetry forbidding the decay to a left-helicity tau τL.

For concreteness we will focus on a bino-like LOSP throughout this paper, though

many of the following arguments hold with only minor modifications for a wino, as well.

In that case, the supercurrent in Eq. (2.2) permits the decay λ→ γ/Z+ G̃L via the second

term in the supercurrent. There is also a possible decay λ → h0 + G̃L where h0 is the

physical higgs boson, but since this occurs entirely through the higgsino fraction of the

LOSP, it will be comparatively suppressed.3 Explicitly, to leading order in mλ/µ, the

dominant LOSP partial widths are

Γγ =
m5
λ cos2 θW
16πF 2

, (2.3)

ΓZ =
m5
λ sin2 θW
16πF 2

(
1− M2

Z

m2
λ

)4

, (2.4)

where mλ ' M1 is the bino-like LOSP mass, and θW is the weak mixing angle. The

subdominant width to higgs bosons is

Γh0 =
m2
λM

2
Z

µ4

m5
λ sin2 θW cos2 2β

32πF 2

(
1− m2

h0

m2
λ

)2

, (2.5)

where tanβ ≡ vu/vd. Feynman diagrams for these standard decays are shown in Fig. 4.

2.2 Additional Operators?

In the case of the true goldstino G̃L, its couplings are saturated by Eq. (2.2). But if

the LOSP were to decay not to a true goldstino but to a generic neutral fermion ζ, then

3See Ref. [20] for a recent discussion of more general neutralino decays.
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Figure 5: Additional diagrams which could contribute to LOSP decay. The dimension 5 operator

(left) can be generated by integrating out an intermediate higgsino (right). There is also a diagram

with h0 and 〈H〉 reversed. However, if ζ is a longitudinal gravitino G̃L, then the width Γ(λ→ h0+ζ)

vanishes in the higgsino decoupling limit.

there are many more operators that might mediate LOSP decay instead. For example, the

dimension 5 operator

O5
R = C5

R

µ

F
λζ(Hu ·Hd)

∗ (λ→ h0 + ζ) (2.6)

mediates the decay λ→ h0 + ζ after electroweak symmetry breaking. Here, the coefficient

µ/F has been chosen with malice aforethought, as this will turn out to be the approximate

scaling behavior for the eaten goldstino. The subscript R indicates that this operator will

preserve a U(1)R symmetry once we identify ζ with an uneaten goldstino of R-charge 1.

There are also additional operators at dimension 5 which violate this U(1)R symmetry,

O5
/R,u·d = C5

/R,u·d
µ

F
λζ(Hu ·Hd), (2.7)

O5
/R,u = C5

/R,u
µ

F
λζH†uHu, (2.8)

O5
/R,d = C5

/R,d
µ

F
λζH†dHd. (2.9)

Considering these O5 operators together, the partial width for the decay λ→ h0 + ζ is

Γh0 =
(
C5

net

)2 µ2M2
Z

m4
λ

m5
λ sin2 θW
32πF 2

(
1− m2

h0

m2
λ

)2

. (2.10)

Here, we have defined

C5
net =

√
2

g′

((
C5
R + C5

/R,u·d

)
cos(α+ β)− 2C5

/R,u sinβ cosα+ 2C5
/R,d cosβ sinα

)
, (2.11)

with α being the physical higgs mixing angle. Thus, if somehow the O5 operators were

dominant over operators like those in Eq. (2.2), then the decay of a pure bino LOSP to a

higgs would dominate over the decay to a γ/Z. Note that the O5 operators only mediate a

decay to one or more higgs bosons, and not to a longitudinal Z, due to the gauge invariance

of the scalar portion of the operators.

Now, in the conventional goldstino case, there is a sense in which the O5 operators

are indeed generated after integrating out the higgsino as in Fig. 5. This occurs not in the
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derivatively-coupled basis, but rather in the non-linear goldstino basis described in Sec. 3.

The pertinent combination of Wilson coefficients attains the value

C5
net =

(m2
Hu
−m2

Hd
) sin 2β + 2Bµ cos 2β

µ2
+O

(
mλ

µ

)
, (2.12)

which MSSM aficionados will recognize as being zero for the tree-level higgs potential in

the decoupling limit |µ| �MZ—the same limit in which it was legitimate to integrate out

the higgsinos in the first place (see App. A for an explanation of this cancellation). This is

as it must be; the physical predictions in this field basis must agree with those of the basis

corresponding to the supercurrent picture of Eq. (2.2), in which the decay rate to higgs

bosons is highly suppressed.

However, because C5
net = 0 arises only because of a delicate cancellation in the true

goldstino case, any deviation will give rise to additional LOSP decays beyond the super-

current prediction. In particular, if there are multiple sectors that break SUSY [9], each of

which contributes only partially to the SSM soft masses, then the couplings of the uneaten

goldstini cannot be determined by supercurrent considerations.4 In general, the goldstini

will have very different couplings from the gravitino; concretely, the goldstini need not be

derivatively coupled to observable-sector particles. For a generic uneaten goldstino

C5
net =

(m̃2
Hu
− m̃2

Hd
) sin 2β + 2B̃µ cos 2β

µ2
+O

(
mλ

µ

)
, (2.13)

where the tildes indicate the linear combination, appropriate to the given goldstino, of

contributions from the SUSY-breaking sectors to the corresponding soft mass. These pa-

rameters need not cancel and thus a pure bino LOSP can exhibit the counterintuitive decay

to a higgs boson and an uneaten goldstino.

2.3 Goldstini and R Symmetries

The differences between LOSP decays to an eaten goldstino versus an uneaten goldstino

become especially striking in the presence of a U(1)R symmetry, and they will be the main

example in this paper. Consider the case of two SUSY breaking sectors as in Fig. 2 where

the uneaten goldstino is associated with a sector 2 that preserves an R-symmetry. As we

will argue in Sec. 3, if the scale of SUSY breaking in sector 1 is much higher than in sector

2, i.e. F1 � F2, then we can ignore the standard LOSP decay to a gravitino, since it will

be overwhelmed by the LOSP decay to the uneaten goldstino from sector 2.

The gaugino soft mass terms violate the R-symmetry, so a bino LOSP cannot undergo

the associated decay to a γ/Z and the uneaten goldstino ζ. Instead, it must (at tree

level) decay to the uneaten goldstino via a virtual higgsino or sfermion as in Figs. 5 and 6,

producing a higgs h0, an arbitarily-polarized Z, or two SM fermions ψψ̄ in the process.

To understand this effect more clearly, note there are only a limited number of R-

symmetric operators that can mediate the decay of a bino LOSP to an uneaten goldstino

and standard model particles once the higgsinos and sfermions are integrated out. At

4This fact was recently exploited in Ref. [13] to arrange for goldstini dark matter with leptophilic decays.
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Figure 6: Representative diagrams contributing to the dimension 6 operators. After integrating

out the intermediate higgsinos or sfermions, these diagrams mediate LOSP decays to Z bosons and

SM difermions, as well as generating additional LOSP decays to h0.

dimension 5, only O5
R respects the R-symmetry; the other O5 operators are associated

with the R-symmetry-violating Bµ term. At dimension 6, we will show that the only

operators consistent with gauge symmetries, R-parity, and our imposed R-symmetry are

O6
Φ,1 =

C6
Φ,1

F
iζ†σ̄µλΦ†DµΦ (λ→ h0/Z + ζ), (2.14)

O6
Φ,2 =

C6
Φ,2

F
iζ†σ̄µλ(DµΦ†)Φ (λ→ h0/Z + ζ), (2.15)

O6
ψ =

C6
ψ

F
(ζ†ψ†)(ψλ) (λ→ ψψ̄ + ζ), (2.16)

where Φ stands for either Hu or Hd, ψ is an SM fermion, and we have indicated in paren-

theses the corresponding LOSP decay mode. The values of the Wilson coefficients C6 are

omitted here for clarity; they are given explicitly in Eq. (4.5). Despite the fact that we

have integrated out a higgsino/sfermion, these operators are not suppressed by the hig-

gsino/sfermion mass as there is a cancellation between the propagator of the virtual heavy

particle and its coupling to the goldstino. We will explain this fact in more detail in Sec. 4;

it is sufficient to note for now that the O6
Φ are suppressed by a power of µ relative to O5

R.

The relative importance of O5
R, O6

Φ,i, and O6
ψ for LOSP decays depend sensitively on

the SSM parameters. In general, the three-body decay λ→ ψψ̄ + ζ is subdominant to the

two-body decays λ→ h0/Z + ζ. As mentioned already, O5
R only mediates a decay to higgs

bosons, not to longitudinal Z bosons, whereas O6
Φ,i can yield either, or even a transverse

Z. One might naively expect O5
R to dominate over O6

Φ,i, since the dimension 6 operator

has a decay amplitude suppressed by mλ/µ. However, O5
R contains Hu ·Hd which involves

an additional 1/ tanβ suppression in the large tanβ limit, while the operators O6
Hu,i

have

no such suppression. Thus, the dimension 6 decays are only suppressed by

ε ≡ mλ tanβ

µ
(2.17)

compared to the dimension 5 decays, which may not even be a suppression at large tanβ.

In Fig. 3, we showed the LOSP branching ratios as a function of both ε and the most

important other free parameter in the theory

tan γ ≡
m̃2
Hu

m̃2
Hd

, (2.18)
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which is the ratio of the contributions to m2
Hu

and m2
Hd

from the sector containing the

uneaten goldstino. For special values of γ, the decay mode λ → Z + ζ can either be

completely suppressed or enhanced relative to λ → h0 + ζ due to cancellations. Our

main interest will be in the higgsino decoupling limit with small ε, where the higgs mode

generically dominates.

Thus, in the presence of a R-symmetry, the LOSP decay to an uneaten goldstino gives

a boost to higgs boson production, even if (and especially if) the LOSP has a negligible

higgsino fraction. Moreover, the decays to the uneaten goldstino, whether featuring a

higgs boson or not, will completely dominate over any decays to the gravitino if there is

an appropriate hierarchy between the two SUSY-breaking scales, as we will describe in the

next section.

3. Goldstino and Gravitino Couplings

Having understood the possibility of enhanced λ → h0 + ζ decays from an operator per-

spective, the remainder of this paper will show how precisely this works in the explicit

example of multiple SUSY breaking sectors.

3.1 The General Framework

As in Ref. [9], we consider two sequestered sectors, each of which spontaneously breaks

SUSY. Each sector has an associated goldstino (η1 and η2, respectively), and we character-

ize the size of SUSY breaking via the goldstino decay constants (F1 and F2, respectively).

Each SUSY breaking sector can be parametrized in terms of a non-linear goldstino multiplet

[21, 9]

Xi =
η2
i

2Fi
+
√

2θηi + θ2Fi, (3.1)

for i = 1, 2. We define the quantities

F ≡
√
F 2

1 + F 2
2 , tan θ ≡ F2

F1
, (3.2)

and we take tan θ ≤ 1 (F1 ≥ F2) without loss of generality.

The combination G̃L = sin θ η1 + cos θ η2 is eaten by the gravitino to become its

longitudinal components via the super-higgs mechanism, but the orthogonal goldstino

ζ = cos θ η1 − sin θ η2 remains uneaten and will be the focus of our study. For simplic-

ity, we will work in the MPl → ∞ limit where the uneaten goldstino remains massless,

though in general ζ will get a mass proportional to m3/2 via SUGRA effects, in particular

mζ = 2m3/2 in the minimal goldstini scenario [9]. In addition, variations in the SUSY-

breaking dynamics [10] or induced couplings between the two sectors [9, 11] can modify

the mass term for ζ.5

5At minimum, one expects loops of SM fields to generate mζ ' msoft/(16π2)n [9], where n depends

on the number of loops necessary to effectively connect sectors 1 and 2 and transmit the needed U(1)R
breaking. The uneaten goldstino will also obtain a tree-level mass due to mixing with the neutralinos, but

this is of order 1/F 2 and is comparatively negligible.
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Supersymmetry breaking is communicated from the two hidden sectors to the visible

sector by means of a non-trivial Kähler potential and gauge kinetic function (presumably

coming from integrating out heavy messenger fields). Some representative terms contribut-

ing to the SSM soft masses are6

K = Φ†Φ
∑

i

m2
φ,i

Fi
X†iXi, (3.3)

fab =
1

g2
a

δab

(
1 +

∑

i

2Ma,i

Fi
Xi

)
, (3.4)

where i = 1, 2, and Φ stands for a general SSM multiplet. These yield the following terms

in the lagrangian up to order 1/F [22]:

L = −
∑

i

m2
φ,iφ

∗φ+
∑

i

m2
φ,i

Fi
ηiψφ

∗

−1

2

∑

i

Ma,iλ
aλa −

∑

i

iMa,i√
2Fi

ηiσ
µνλaF aµν +

∑

i

Ma,i√
2Fi

ηiλ
aDa. (3.5)

Thus, the parameter m2
φ,i (Ma,i) is the contribution to the SUSY-breaking scalar (gaugino)

mass from each respective sector. Note that they are intrinsically related to the coupling

of the SSM fields to the goldstini.

Rotating to the G̃L–ζ basis yields similar interaction terms for the eaten goldstino G̃L
and the uneaten goldstino ζ,

L
G̃L

=
m2
φ

F
G̃Lψφ

∗ − iMa√
2F

G̃Lσ
µνλaF aµν +

Ma√
2F

G̃Lλ
aDa, (3.6)

Lζ =
m̃2
φ

F
ζψφ∗ − iM̃a√

2F
ζσµνλaF aµν +

M̃a√
2F

ζλaDa, (3.7)

where the untilded and tilded mass parameters associated with gauginos denote

Ma = Ma,1 +Ma,2, (3.8)

M̃a = Ma,2 cot θ −Ma,1 tan θ, (3.9)

with the analogous notation for the scalar mass-squared parameters. Throughout, we will

work in the limit cot θ � 1, for which we can take

M̃a

F
=
Ma,2

F2
,

m̃2
φ

F
=
m2
φ,2

F2
. (3.10)

In this limit, as long as any of the Ma,2 or m2
φ,2 are at least on the order of the weak scale,

LOSP decays to gravitinos are very suppressed and can be ignored for collider purposes.

We see that as predicted via the supercurrent, the true goldstino G̃L couples to SSM

fields in proportion to the physical soft masses. In contrast, ζ couples via the tilded mass

parameters which in the cot θ � 1 limit are proportional just to the contribution of sector

2 to the SSM soft masses.
6We only give the Kähler potential for a single species of scalar; more general A and B-terms involving

multiple species can also be formed.
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3.2 The Decoupling and R-symmetric Limit

In this paper, we will focus on the higgsino decoupling and R-symmetric limits. That is, we

will be considering the limit where µ is large compared to mλ, and the limit where sector

2 preserves a U(1)R symmetry. There are a number of important features of this limit.

When the higgsinos are decoupled, the soft terms m2
Hu

, m2
Hd

, and Bµ must scale as

O(µ2) in order to get successful electroweak symmetry breaking.7 We can see from the

above lagrangian that the coupling of G̃L to a higgsino and a higgs is proportional to

these O(µ2) soft SUSY-breaking masses. The same is true for the couplings of ζ if we

make the additional simplifying assumption that the tilded mass parameters scale in the

same fashion, so long as this is not forbidden by a symmetry. With one noted exception

in Sec. 6.2, however, our results do not depend on this assumption. From the diagrams

in Fig. 5, one would naively expect the amplitudes for the decay of a bino LOSP to the

physical higgs and either goldstino via a virtual higgsino to be of order µ and thus dominant

over other decays to the same goldstino in the decoupling limit. As we will argue in Sec. 5.2,

there is a cancellation in the G̃L case which renders the decay λ→ h0 + G̃L small, whereas

for ζ, the decay λ→ h0 + ζ can indeed dominate.

In the limit where sector 2 is R-symmetric, the contribution from sector 2 to SSM

A-terms, B-terms, and gaugino masses is zero. Most relevant for our purposes, this implies

that B̃µ and M̃1 are nearly zero. The absence of a B̃µ term implies that the cancellation

in Eq. (2.12) seen for G̃L cannot persist for the uneaten goldstino ζ. The absence of a M̃1

term means that the LOSP decay to a γ/Z and ζ is highly suppressed.8 Both of these facts

imply a large λ→ h0 + ζ branching fraction. Depending on the relative importance of the

dimension 5 or dimension 6 operators, the mode λ→ Z + ζ can be large as well.

4. Higgsino Decoupling Limit Effective Field Theory

Starting from the above goldstini framework, we can now systematically describe which

operators contribute to bino LOSP decay in the higgsino decoupling and R-symmetric

limits. We will then give the resulting decay rates for the three main decay modes: λ →
h0 + ζ, λ→ Z + ζ, and λ→ ψψ̄ + ζ.

4.1 Leading R-symmetric Operators

In the higgsino decoupling limit, it is convenient to organize the LOSP decay operators in

terms of the small parameter mλ/µ. This may be accomplished practically by integrating

out the heavy higgsino degrees of freedom, yielding an effective field theory with succes-

sively higher-dimension operators suppressed by additional powers of µ. Away from the

7Strictly speaking, this is only true for the combinations m2
Hu

and m2
Hd

+Bµ tanβ (working in the large

tanβ limit). However, if one simultaneously decouples the heavy higgs scalars in the same way, so that

m2
A0 is of order µ2, then all three soft mass parameters scale as µ2 barring accidental cancellations. Our

later results for the uneaten goldstino are robust against this assumption, since m2
Hu

has the desired scaling

properties regardless.
8In the alternative limit where sector 1 preserves an R-symmetry, one expects λ → γ/Z + ζ to still be

relevant, but that will not be the focus of this paper.
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decoupling limit, App. C describes how to calculate the LOSP branching fractions for ar-

bitrary µ. For simplicity, we will take F1 � F2, in which case the couplings of the uneaten

goldstino are completely determined by sector 2.

Recall that in the MSSM, gauginos have R-charge 1, higgs multiplets have R-charge

1, and matter multiplets have R-charge 1/2. For an R-symmetric SUSY breaking sector,

the corresponding goldstino has R-charge 1. Putting this together, at dimension 5, there

is only a single operator contributing to bino LOSP decay consistent with the symmetries

of the theory (including the imposed R-symmetry):

O5
R = C5

R

µ

F
λζ(Hu ·Hd)

∗. (4.1)

This operator may mediate the decay of a bino LOSP to the uneaten goldstino and one or

two physical higgs bosons h0.9

At dimension 6, there are three sorts of additional operators:10

O6
Φ,1 =

C6
Φ,1

F
iζ†σ̄µλΦ†DµΦ, (4.2)

O6
Φ,2 =

C6
Φ,2

F
iζ†σ̄µλ(DµΦ†)Φ, (4.3)

O6
ψ =

C6
ψ

F
(ζ†ψ†)(ψλ), (4.4)

where Φ stands for either Hu or Hd, and ψ is a standard model fermion. The dimension 6

operators O6
Φ,i may produce a Z boson (longitudinal or otherwise) instead of or in addition

to any higgs boson production. The dimension 6 operator O6
ψ will produce a difermion

pair instead.11 The effects of O6
ψ, but not the others, were considered in Ref. [9].

We have omitted two possible R-symmetric operators, ∂µζσνλ†Fµν and ∂µζσνλ†F̃µν ,

which could mediate the decay of the bino to a photon or Z and the goldstino. It is clear by

examining the original lagrangian of Eq. (3.7) that in the R-symmetric limit with M̃1 = 0,

a decay to a photon cannot occur at tree-level, so that any effects of such operators will

be suppressed compared to the others of the same mass dimension.

The values of the Wilson coefficients for the above operators can be found by matching

9Gauge invariance of the scalar portion of the operator forbids production of goldstone bosons (i.e. lon-

gitudinal W/Z bosons), and the heavier higgs bosons A0, H0, and H± are of course kinematically excluded

in the decoupling limit.
10We have used integration by parts to move all derivatives off of λ, and used field redefinitions to

eliminate terms proportional to the equations of motion of the goldstino and gauge bosons. We elect not

to use field redefinitions to eliminate terms proportional to σ̄µ∂µλ, as the resulting operators (arising from

the gaugino mass term) would violate the R-symmetry.
11This operator arises from integrating out intermediate sfermions as opposed to higgsinos, so our power

counting may be spoiled if there are any relatively light sfermions. We will later explicitly calculate the

decay rate for λ→ ψ̄ψ + ζ at tree level to all orders in m2
λ/m

2
φ to account for this possibility.
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onto the original lagrangian of Eq. (3.7):

C5
R =

g′
(
m̃2
Hu
− m̃2

Hd

)

µ2
, C6

Hu,1 =
g′m̃2

Hu√
2µ2

, C6
Hd,1

= −
g′m̃2

Hd√
2µ2

,

C6
ψ = −

√
2g′Yψ

m̃2
φ

m2
φ

, C6
Hu,2 = 0, C6

Hd,2
= 0. (4.5)

Here, g′ is the hypercharge gauge coupling, Yψ is the hypercharge of the relevant SM

fermion, and the tilded mass parameters are defined in Eq. (3.9). Inverse powers of the

higgsino mass-squared µ2 and scalar mass-squared m2
φ appear as expected, since these are

the masses of the fields we are integrating out.

The key observation is that the above Wilson coefficients are still order O(µ0) in

the higgsino decoupling limit,12 since the soft masses scale as O(µ2). Thus, even if the

LOSP has negligible higgsino fraction, there are relevant bino-goldstino-higgs couplings.

As advertised, the leading decays in the higgsino-decoupling and R-symmetric limits are

λ→ h0 + ζ, λ→ Z + ζ, λ→ ψψ̄ + ζ. (4.6)

Now, using the effective operators of Sec. 4.1, we can calculate the various bino LOSP decay

widths in the higgsino decoupling and R-symmetric limits. Possible R-violating decays are

described in App. B.

4.2 Decay to Higgs Bosons

The contributions to the λ→ h0 +ζ decay from the dimension 5 and dimension 6 operators

may be expressed in terms of an effective Yukawa interaction for on-shell states:13

Leff = −MZµ sin θW√
2F

(
C5

net +
mλ

µ
C6

net

)
λζh0. (4.7)

The coefficients C5
net and C6

net are appropriate linear combinations of the Wilson coefficients

of the dimension 5 and 6 operators, respectively, and are given explicitly in App. B. In the

decoupling and R-symmetric limits, they take on the values

C5
net =

(m̃2
Hu
− m̃2

Hd
) sin 2β

µ2
, (4.8)

C6
net =

m̃2
Hu

sin2 β − m̃2
Hd

cos2 β

µ2
. (4.9)

12Note that they are not of order 1, but rather of order cot θ. We have chosen to leave such dependence in

the Wilson coefficients, rather than replacing F with F2 everywhere, so that the only modification needed

to describe the couplings of the eaten goldstino is to remove tildes from all soft mass parameters.
13This is not strictly speaking the whole story; the bino may also decay via two local dimension 5

operators (O5
R and λλ(Hu ·Hd)∗ or their wino equivalents) connected by a virtual wino or bino. However,

their contributions to the decay amplitude are suppressed by mλ/(µ tanβ) compared to that of O5
R alone,

or 1/ tan2 β to those of the dimension 6 operators, and can be safely ignored in most limits.
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The decay rate via this channel is

Γ =
mλµ

2M2
Z sin2 θW

32πF 2

(
C5

net +
mλ

µ
C6

net

)2(
1− m2

h0

m2
λ

)2

. (4.10)

In the extreme decoupling limit, we would expect the C5
net term, arising from the

dimension 5 operator, to dominate over the effects of any dimension 6 operators, which are

naturally suppressed by a factor of mλ/µ. However, our power counting may be spoiled

for large tanβ, due to the factor of sin 2β ≈ 2/ tanβ in C5
net. In the event that tanβ is of

the same order as µ/mλ, we cannot neglect the dimension 6 operators. There are no such

complications for the dimension 7 or higher operators, which may be safely ignored in the

decoupling limit.

As a side note, there are only a few changes to the above calculation if we consider a

wino LOSP. There are now two allowed operators at dimension 5—namely, λaζ(HuT
a ·Hd)

∗

and λaζ(Hu · T aHd)
∗—but the results throughout are almost identical, requiring only the

replacement g′ → −g or sin θW → − cos θW (as the neutral higgsinos have T 3 and Y

differing only by a sign). In particular, one can verify that there is no net coupling to the

Z boson from the dimension 5 operators,14 so the neutral wino LOSP decays dominantly

to higgs bosons in the small (mλ tanβ)/µ limit.

4.3 Decay to Z Bosons

The dimension 5 operator does not contribute to Z decay. The dimension 6 operators

mediate the decay λ→ Z + ζ due to the presence of covariant derivatives. Expanding the

lagrangian in unitarity gauge, we find a relatively simple coupling to the Z boson:

L =
M2
Z sin θW√

2F
C6

net,Zζ
†σ̄µλZµ, (4.11)

with C6
net,Z being a different linear combination of the Wilson coefficients of the dimension

6 operators. The definition of C6
net,Z is given explicitly in App. B, and attains the value

C6
net,Z = −

m̃2
Hu

sin2 β + m̃2
Hd

cos2 β

µ2
(4.12)

in the decoupling and R-symmetric limit. The resulting decay rate is

ΓZ =
M2
Zm

3
λ sin2 θW

32πF 2

(
C6

net,Z

)2
(

1− M2
Z

m2
λ

)2(
1 + 2

M2
Z

m2
λ

)
. (4.13)

14Dimension 5 operators can, however, induce a λ± →W±ζ decay. Such decays may well be phenomeno-

logically interesting, as the competing observable-sector decays (λ± → l±νλ3, λ± → π±λ3, et al. [23])

can be highly suppressed due to the near-degeneracy of the chargino and wino. However, such decays are

certainly not specific to this R-symmetric limit, or even to the multiple goldstino model.
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4.4 Decay to Difermions

Finally, the operator O6
ψ mediates the decay of a bino LOSP to a goldstino and a fermion

pair. The decay rate from just this operator is

Γψψ̄ =
m5
λ sec2 θW
32πF 2

αEMY
2
ψ

12π

m̃4
φ

m4
φ

(4.14)

in the limit of vanishing fermion masses.15

As argued in Ref. [9], the decay rate is non-zero even in the limit of very large scalar

masses. However, due to the factor of αEMY
2
ψ/(12π), the decay rate to fermions is typically

subdominant to the higgs and Z modes, even after summing over all possible fermion final

states. One might wonder whether there could be an enhancement at moderate values

of the scalar masses. Calculating the explicit tree-level decay rate for this mode to all

orders in the scalar mass (while still working in the higgsino decoupling limit), the result

in Eq. (4.14) is multiplied by a function f [m2
φ/m

2
λ]:

f [x] = 6x2

(
−5 + 6x+ 2(x− 1)(3x− 1) log

[
1− 1

x

])
' 1 +

4

5x
+O

(
1

x2

)
. (4.15)

This function never grows larger than 6 (at mφ = mλ), and drops off quite sharply from

that value as mφ increases. For example, mφ must be less than 1.25mλ for f to be greater

than 2. Thus, the difermion mode is indeed subdominant. The sole exception occurs when

m̃2
Hu

and m̃2
Hd

are both close to zero, where the higgs and Z decay modes are suppressed.

5. Comparisons to the Gravitino Case

Before showing results for bino LOSP branching ratios in the next section, it is instructive to

compare the R-symmetric goldstino results in Sec. 4 to the more familiar case of a gravitino.

Indeed, the existence of a bino-goldstino-higgs coupling in the higgsino decoupling limit is

quite surprising from the point of view of the more familiar longitudinal gravitino couplings,

where it is known that the decay λ → h0 + G̃L is highly suppressed. In this section,

we will go to the higgsino decoupling limit and calculate the effective interactions for a

longitudinal gravitino. In the decoupling limit effective theory, we will find seemingly

miraculous cancellations enforced by supercurrent conservation.

5.1 Additional Operations for the Gravitino

In the higgsino decoupling limit for a longitudinal gravitino, the operators from Sec. 4.1

persist after the replacement ζ → G̃L, and they have the same Wilson coefficients as

Eq. (4.5) after removing the tildes from the soft mass parameters. In addition, there are

15We also neglect here possible contributions from interference between diagrams featuring this operator

and diagrams in which the fermions originate from an off-shell higgs or Z produced by one of the other

dimension 6 operators.
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eight R-symmetry-violating operators at dimension 5 and 6 which contribute to bino LOSP

decay. Their associated Wilson coefficients can again be found by matching.16

O5
/R,B = C5

/R,B
M1

F
iλσµνG̃LFµν , C5

/R,B =
1√
2
, (5.1)

O5
/R,Hu·Hd

= C5
/R,Hu·Hd

µ

F
λG̃L(Hu ·Hd), C5

/R,Hu·Hd
= 0, (5.2)

O5
/R,Hu

= C5
/R,Hu

µ

F
λG̃LH

†
uHu, C5

/R,Hu
=

g′√
2

(
Bµ
µ2
− M1

2µ

)
, (5.3)

O5
/R,Hd

= C5
/R,d

µ

F
λG̃LH

†
dHd, C5

/R,Hd
= − g′√

2

(
Bµ
µ2
− M1

2µ

)
, (5.4)

O6
/R,1 =

C6
/R,1

F
iG̃†Lσ̄

µλ(Hu ·DµHd)
∗, C6

/R,1 = − g
′Bµ√
2µ2

, (5.5)

O6
/R,2 =

C6
/R,2

F
iG̃†Lσ̄

µλ(DµHu ·Hd)
∗, C6

/R,2 =
g′Bµ√

2µ2
, (5.6)

O6
/R,3 =

C6
/R,3

F
iG̃†Lσ̄

µλ(Hu ·DµHd), C6
/R,3 = 0, (5.7)

O6
/R,4 =

C6
/R,4

F
iG̃†Lσ̄

µλ(DµHu ·Hd), C6
/R,4 = 0. (5.8)

The first operator O5
B is exactly the second term in Eq. (3.6). The terms proportional to

M1 in C5
/R,Hu

and C5
/R,Hd

derive from the third term in Eq. (3.6), which contains the auxiliary

field D. The remaining contributions arise from the R-symmetry-violating Bµ term.

Looking at these Wilson coefficients, one might (erroneously) conclude that in the hig-

gsino decoupling limit, a bino LOSP should dominantly decay to a gravitino via a physical

higgs instead of via a γ/Z. After all, the leading order bino-goldstino-higgs couplings come

from four dimension-5 operators—O5
R, O5

/R,Hu·Hd
, O5

/R,Hu
, and O5

/R,Hd
—which are enhanced

by a factor of µ/mλ compared to the bino-goldstino-γ/Z coupling from O5
B.

However, we know this not to be the case for the gravitino. From conservation of

the supercurrent, the decay rate for λ → h0 + G̃L given in Eq. (2.5) is suppressed in the

decoupling limit by a factor of O(m2
λM

2
Z/µ

4) from the decay rates for λ → γ/Z + G̃L
given in Eqs. (2.3) and (2.4). Apparently, when calculating the decay rate of a bino

LOSP to a higgs boson and a gravitino using the decoupling limit effective field theory,

the contributions to the amplitude from the dimension 5, dimension 6, and dimension 7

operators yield cancellations up to three orders in the mλ/µ expansion.

5.2 Miraculous Cancellations

The easiest way to see that there must be a cancellation is to go back to the gravitino

coupling from Eq. (3.6) before integrating out the higgsino. We can make a standard

SUSY transformation on all of our visible sector fields with infinitesimal parameter G̃L/F ,

φ → φ+
1

F
ψG̃L, (5.9)

16There are also analogous results in the case of an uneaten goldstino in the absence of an R-symmetry,

as long as tildes are added to the soft mass parameters and G̃L is replaced with ζ. See App. B.
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with similar expressions for other fields. This is an allowed field redefinition since it leaves

the one-particle states unchanged. Since the coefficients of the SUSY-breaking mass terms

and the couplings of G̃L are identical up to a sign, the coupling terms (at order 1/F ) cancel

under this transformation. This cancellation is special to the eaten goldstino and does not

in general occur for an uneaten goldstino. The SUSY-respecting part of the lagrangian

will clearly remain unchanged under this field redefinition except for terms proportional to

∂µG̃L. Thus, G̃L only couples derivatively to MSSM particles, and does so in exactly the

manner described by the supercurrent formalism of Eq. (2.2).

It is also instructive to see how this cancellation works in the decoupling limit effective

field theory. The λ → h0 + G̃L decay may still be completely parametrized as a Yukawa

interaction as in Eq. (4.7) for the leading two orders in mλ/µ:17

L = −MZµ sin θW√
2F

(
C5

net +
mλ

µ
C6

net

)
λG̃Lh

0. (5.10)

The coefficients C5
net and C6

net have new contributions proportional to Bµ and M1:

C5
net =

(m2
Hu
−m2

Hd
) cos(α+ β)− 2Bµ sin(α+ β)

µ2
+
M1

µ
sin(α+ β), (5.11)

C6
net =

m2
Hd

cosβ sinα+m2
Hu

sinβ cosα−Bµ cos(β − α)

µ2
. (5.12)

If one uses the tree-level relations for the parameters in the higgs potential (see App. A),

these simplify considerably:

C5
net = −M1 cos 2β

µ
+O

(
M2
Z

µ2

)
, C6

net = cos 2β +O
(
M2
Z

µ2

)
. (5.13)

We see that the O(1) term in C5
net have cancelled entirely, and the O(M1/µ) term, which

arose from the λG̃LD term in Eq. (3.7), cancels against C6
net since M1 = mλ at this order.

Diagrammatically, the first cancellation is among the diagrams in Fig. 5, and the second

cancellation is among those in Fig. 7. There is yet another cancellation at the next order

in µ involving dimension 7 operators, but it is not instructive to show it explicitly here;

it may be verified using the methods of App. C after diagonalizing the neutralino mass

matrix order by order in µ.

5.3 Why Goldstini are Different

These miraculous cancellations for the gravitino case, removing the leading three orders of

contributions to the bino LOSP decay to higgs, are very specific to the gravitino and the

values of its associated Wilson coefficients. There is much more freedom in choosing the

couplings of the uneaten goldstino. Concretely, the Wilson coefficients feature the tilded

versions of soft SUSY-breaking mass parameters, recalling M̃i = Mi,2 cot θ−Mi,1 tan θ from

Eq. (3.9). These tilded parameters need not satisfy any a priori relation among themselves,

and thus the cancellations above will not occur in general for a goldstino.

17The diagrams featuring two dimension 5 operators connected by a virtual bino or wino cancel separately.
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Hu/d

F

〈H〉
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λ G̃Lm2

Hu/d

F

〈H〉
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D
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h0

M1

F

〈H〉

Figure 7: These diagrams, which we would expect to yield O(µ0) contributions to the λ→ h0+G̃L
amplitude, cancel among themselves.

Said another way, the mechanisms which ensured the cancellations for the gravitino

are not applicable in the goldstino case. The field redefinition of Eq. (5.9) made it manifest

that the gravitino couples derivatively to observable sector fields, but the same cannot be

done in general for the uneaten goldstino. We could attempt to remove one such coupling

with the same sort of SUSY transformation, with

φ→ φ+
1

F

m̃2
φ

m2
φ

ψζ, (5.14)

but unless m̃2
φ/m

2
φ = M̃a/Ma for all scalar and gaugino mass terms, there is no transfor-

mation that will remove all such couplings and make ζ purely derivatively coupled.

Thus, one expects a variety of counterintuitive LOSP decay patterns in the presence

of goldstini, such as wrong-helicity decays like τ̃R → τL + ζ, flavor-violating decays, or

reshuffled neutralino/chargino branching fractions. Of course, the phenomenological dif-

ferences between a longitudinal gravtino and an uneaten goldstino are highlighted when

the “standard” decay is forbidden. This is precisely the case for our bino LOSP in the

higgsino decoupling and R-symmetric limit, where the standard γ/Z decay is suppressed

and the novel h0 mode can dominate.

6. Branching Ratio Results

We now discuss the bino LOSP branching ratios in the presence of multiple SUSY breaking

sectors, using the R-symmetric setup from Fig. 2. In the bulk of parameter space, the decay

mode λ → ψψ̄ + ζ is suppressed, so we will first focus on the branching ratios to higgs

and Z bosons, neglecting any three-body decays. A brief discussion of what happens away

from the R-symmetric limit appears in Sec. 6.3.

6.1 Higgs and Z Boson Branching Ratios

When three-body decays can be neglected, the dominant phenomenology is determined by

the two parameters

ε ≡ mλ tanβ

µ
, tan γ ≡

m̃2
Hu

m̃2
Hd

, (6.1)
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Figure 8: Branching ratios for λ→ h0 + ζ in the ε–γ plane for tanβ = 5 (left, same as Fig. 3) and

tanβ = 20 (right), respectively. The remaining branching ratio is dominated by λ → Z + ζ. The

main differences between the two plots arise because at larger tanβ, the kinematically excluded

region mλ < m0
h (which bounds the left plot) is not encountered until larger ε. In this and the

remaining plots, we have fixed M1 = 155 GeV and mh0 = 120 GeV, which are mainly relevant for

setting the phase space factors in the partial widths.

previously mentioned in Eqs. (2.17) and (2.18). Using the partial widths calculated in

Eq. (4.10) and Eq. (4.13), the branching ratio for the bino LOSP decay to h0 or Z, assuming

both are kinematically allowed, may be expressed in the relatively compact form:

Br(λ→ h0ζ) =

(
ε−1−ε−1

0
ω

)2

1 +
(
ε−1−ε−1

0
ω

)2 , Br(λ→ Zζ) =
1

1 +
(
ε−1−ε−1

0
ω

)2 . (6.2)

In particular, the branching ratio to Z bosons is a Lorentzian in ε−1 and is thus negligible

for small ε, as expected. The Lorentzian is centered at ε−1
0 with a width ω,

ε−1
0 =

1− tan γ tan2 β

2 tan2 β(tan γ − 1)
, (6.3)

ω =
1 + tan γ tan2 β

2 tan2 β(tan γ − 1)

(
m2
λ −M2

Z

m2
λ −m2

h0

√
1 + 2

M2
Z

m2
λ

)
, (6.4)

where the precise values of ε−1
0 and ω depend on the higgs soft mass ratio tan γ, tanβ, and

various kinematic factors. Of course, additional three-body decays, whether to fermions or

to multiple higgs or Z bosons, will spoil the simplicity of these expressions.

Plots of the branching ratio to higgs in the ε–γ plane are shown in Fig. 8, and slices

through that plane are shown in Figs. 9 and 10. In the latter plots, the solid lines are

the all-orders tree-level calculations from App. C, while the dashed lines are the analytic
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Figure 9: Branching ratios for the bino LOSP as a function of ε for fixed values of tan γ. These

are all slices of the left plot in Fig. 8 with tanβ = 5, M1 = 155 GeV, and mh0 = 120 GeV. The

solid curves are the all-orders result from App. C, while the dashed curves are from the higgsino

decoupling effective theory in Sec. 4. The curves are Br(λ → h0ζ) (blue), Br(λ → Zζ) (purple),

Br(λ → ψψ̄ζ) (green), and Br(λ → γζ) (yellow). The decay to higgses dominates in the small ε

limit, with the next most relevant mode being the Z. The branching ratio to difermions is calculated

using the results of Sec. 6.2, taking the parameter ρ defined in Eq. (6.7) to be 1.0. As advertised, this

branching ratio to difermions is very suppressed, and the branching ratio to photons is essentially

zero.

results obtained using the higgsino decoupling effective theory from Sec. 4 (while still using

the all-orders result for the physical LOSP mass mλ).

The small ε limit corresponds to the extreme higgsino decoupling regime, where not

only |µ| � mλ, but the tanβ suppressed dimension 5 operator O5
R dominates over the

dimension 6 operators. Thus, generically, for small ε, the decay is overwhelmingly to higgs

bosons, as expected. However, there is an exception for the region around tan γ = 1. When

tan γ = 1, m̃2
Hu
− m̃2

Hd
and C5

net are both zero and the branching ratios to higgs and Z

bosons should be roughly equal up to phase space factors. For tan γ slightly removed from

unity (downwards for ε > 0, upwards for ε < 0), C5
net will destructively interfere with C6

net

and the Z mode will dominate.

Moving away from small ε, we expect the Z branching ratio to increase, as the contri-

butions from dimension 6 operators to bino decay are roughly equal for the higgs and Z

modes. This is shown in Fig. 9. The effects of interference between the dimension 5 and

dimension 6 operators on the higgs amplitude also grow more pronounced for larger ε. For
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Figure 10: Same as Fig. 9, but with branching ratios given as a function of γ for fixed values of ε.

ε > 0, the interference is destructive for tan γ ∈ (1/ tan2 β, 1), and vice versa for ε < 0.18

For extremely large ε, the approximations based on being in the higgsino decoupling

limit break down as mλ/µ approaches O(1). Ultimately, the higgs mode is kinematically

excluded once the mass of the lightest neutralino (by now predominantly higgsino) drops

below the higgs mass.

6.2 Difermion Branching Ratio

In most of parameter space, the decay mode λ → ψψ̄ + ζ is suppressed. We can see this

most clearly by comparing the decay rate to all fermion species to the decay rate to a Z:

∑
ψ Γψψ̄
ΓZ

=
αEM

3π sin2 2θW

∑
i Y

2
i τ

2
i fi(

C6
net,Z

)2

m2
λ

M2
Z

(
1− M2

Z

m2
λ

)−2(
1 + 2

M2
Z

m2
λ

)−1

, (6.5)

where τi ≡ m̃2
φi
/m2

φi
and fi ≡ f [m2

φi
/m2

λ], with the function f defined in Eq. (4.15).

For concreteness, consider the limit where tanβ � 1, |µ|,mφi � mλ, and the τi
are all equal to a common value τ0. The sum over SM fermion hypercharges (excluding

the presumably kinematically inaccessible top) is 103/12. Assuming that the tree-level

relations between the soft masses approximately hold, C6
net,Z = τ0. All the τi values then

18The operative relative sign is that between µ and mλ. The O5 operator features an odd power of µ,

while the mλ factor comes from the C6 operators, whose only non-vanishing contributions feature the Dirac

equation applied to the external bino spinor.
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Figure 11: Branching ratios for the bino LOSP as a function of the parameter ρ defined in Eq. (6.7)

below, measuring in effect the relative contributions to the higgs and sfermion mass terms by sector

2. If this parameter is tuned close to zero, then the higgs and Z modes shut off, leaving only

the difermion channel. For larger values of ρ, the difermion channel is suppressed; this occurs

generically when the tilded higgs soft mass parameters scale with µ2, as mentioned in Sec. 3.2. For

concreteness, all prior figures have used ρ = 1.0.

cancel, and the net result is

∑
ψ Γψψ̄
ΓZ

≈ 1

107

m2
λ

M2
Z

(
1− M2

Z

m2
λ

)−2(
1 + 2

M2
Z

m2
λ

)−1

. (6.6)

This ratio obtains a minimum of around 1/28 at mλ ≈ 140 GeV, and it is smaller than

1/10 for mλ in the approximate range 100–300 GeV.

Of course, there is one somewhat contrived region of parameter space for which the

decay to fermions can dominate; if the sector containing the uneaten goldstino gives no

contribution to any of the higgs soft masses, then m̃2
Hu

and m̃2
Hd

vanish and the decay via

an off-shell sfermion are the only ones allowed. Fig. 11 shows that the decay to fermions

can indeed dominate if the parameter

ρ ≡
m̃2
Hu

+ m̃2
Hd

2µ2 cot θ

∑
i Y

2
i∑

i Y
2
i τifi

, (6.7)

with sums taken over all appropriate sfermion species, is tuned close enough to zero.

6.3 The R-violating Regime

Though not the focus of this paper, we wish to briefly comment on possible R-violating

decays, for which calculations are given in App. B. As we move away from the R-symmetric

limit, the LOSP decay to photons is now allowed at tree level, and will generally garner

a branching ratio that is at least of the same order as of those to higgs or Z. In Fig. 12,

we show branching ratios as a function of a parameter δ which measures the amount of

deviation from the R-symmetric limit,

δ ≡ 2

3

τ1 + τ2 + τBµ
τHu + τHd

, (6.8)
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Figure 12: Branching ratios for the bino LOSP as a function of the parameter δ, defined in

Eq. (6.8), that measures the deviation from the R-symmetric limit. When δ = 0, we are in the

R-symmetric limit of the previous figures. When δ = 1, the branching ratios for λ → X + ζ are

exactly what one would predict for λ → X + G̃L in the more conventional model with only one

hidden sector; the photon mode dominates and the higgs mode is highly suppressed.

with τi ≡ M̃i/Mi for any soft mass(-squared) parameter Mi. In Fig. 12, we hold τ1 = τ2 =

τBµ and τHd = τHu = τφi for simplicity. When δ = 0 we have the exact R-symmetric limit;

when δ = 1 we have the “aligned” limit in which the uneaten goldstino couples simply

as a rescaled version of the gravitino (i.e. there is a basis, obtained by making the field

redefinition Eq. (5.14), in which it couples only derivatively). Note in the latter limit the

higgs branching ratio effectively shuts off, as expected.

The diversity of possible LOSP decay branching ratios shown in Fig. 12 is reminiscent

of mixed neutralino LOSP scenarios, where the LOSP has comparable bino, wino, and

higgsino fractions. Here, however, we are still working in the higgsino decoupling limit, so

the interesting pattern of LOSP widths come not from varying the identity of the LOSP

but rather from varying how the hidden sectors couple to the SSM.

7. Conclusion

SUSY breaking scenarios with a light gravitino offer fascinating phenomenological possi-

bilities. With the LOSP no longer stable, gravitinos could comprise part or all of the dark

matter of the universe, and collider experiments could discover extended SUSY cascade

decays. However, the gravitino need not be the only SUSY state lighter than the LOSP. In

the context of multiple SUSY breaking, there is a corresponding multiplicity of goldstini

whose masses are all typically proportional to m3/2 (or loop suppressed compared SSM soft

masses). Thus, the LOSP may dominantly decay to an uneaten goldstino instead of the

gravitino. Since the couplings of the uneaten goldstino are unconstrained by supercurrent

conservation, the LOSP can exhibit counterintuitive decay patterns.

In this paper, we have focused on the case of a bino-like LOSP which decays domi-

nantly to higgs bosons despite having negligible higgsino fraction. This effect is particularly

pronounced in the presence of a U(1)R symmetry, which suppresses the expected λ→ γ+ζ

decay. By studying which low energy effective operators are generated in the higgsino de-

coupling limit, we have understood why the mode λ → h0 + ζ dominates in the limit of
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small (mλ tanβ)/µ, and also why there is a non-standard λ → Z + ζ decay mode away

from that limit. We have seen explicitly that there are delicate cancellations in the decay

width of the LOSP to a gravitino, and the counterintuitive decays of a LOSP to an uneaten

goldstino arise from incomplete cancellations.

Similar counterintuitive decay patterns would be present for a wino-like LOSP, and in

general, one should contemplate the possibility of any LOSP decay pattern consistent with

SM charges. Those LOSP decays might involve an uneaten goldstino as in this paper, but

could also be present with a light axino [24, 25] or a new light hidden sector [26, 27, 28]. To

our mind, the most intriguing possibilities involve copious higgs boson production in the

final stages of a SUSY cascade decay, which may offer new higgs discovery modes and give

further motivation for boosted higgs searches. Studying these phenomena is particularly

relevant given the expected LHC sensitivity to SUSY scenarios in the coming two years.
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A. Tree-Level Higgs Potential

The MSSM tree-level higgs potential for the neutral higgs sector arises from a combination

of F -terms, D-terms, and three soft SUSY-breaking terms:

V (H0
u, H

0
d) = (|µ|2 +m2

Hu)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 +Bµ(H0
uH

0
d +H0∗

u H
0∗
d )

+
g2 + g′2

8
(|H0

u|2 − |H0
d |2)2. (A.1)

Once we recall that

M2
Z =

1

2
(g2 + g′2)

(〈
H0
u

〉2
+
〈
H0
d

〉2
)
, (A.2)

tanβ ≡
〈
H0
u

〉
/
〈
H0
d

〉
, (A.3)

we can use the fact that the vacuum must minimize the higgs potential to find relations

among these parameters.

0 = m2
Hu + |µ|2 +Bµ cotβ −M2

Z

cos 2β

2
, (A.4)

0 = m2
Hd

+ |µ|2 +Bµ tanβ +M2
Z

cos 2β

2
. (A.5)

It is convenient to take linear combinations of these relations, one without |µ|2 and one

without Bµ:

0 = (m2
Hu −m2

Hd
) sin 2β + 2Bµ cos 2β −M2

Z

sin 4β

2
, (A.6)

0 = m2
Hu sin2 β −m2

Hd
cos2 β − |µ|2 cos 2β −M2

Z

cos 2β

2
. (A.7)
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In the higgsino decoupling limit (|µ|2,m2
A0 �M2

Z), we may neglect the terms proportional

to M2
Z . Also in the same limit, the tree-level relation for the physical higgs mixing angle

α simplifies considerably:

tan 2α = tan 2β
m2
A0 +M2

Z

m2
A0 −M2

Z

⇒ α = β − π/2 +O
(
M2
Z

m2
A0

)
. (A.8)

Once one applies Eq. (A.8), the relations Eqs. (A.6) and (A.7) are precisely those

which cause the cancellation of the λ→ h0 + G̃L amplitude at the first two orders in µ/M1

in Eqs. (5.11) and (5.12). Another linear combination of Eqs. (A.4) and (A.5) gives a

(non-independent) relationship that can be useful for simplifying C6
net,Z ,

0 = |µ|2 +m2
Hu sin2 β +m2

Hd
cos2 β +Bµ sin 2β +M2

Z

cos2 2β

2
. (A.9)

A third relation, involving the pseudoscalar mass m2
A0 , allows us to solve for all three soft

mass parameters if desired:

Bµ = −1

2
m2
A0 sin 2β, (A.10)

m2
Hu = −|µ|2 +m2

A0 cos2 β +M2
Z

cos 2β

2
, (A.11)

m2
Hd

= −|µ|2 +m2
A0 sin2 β −M2

Z

cos 2β

2
. (A.12)

Of course, all of the above relations are valid only at tree-level, and one does expect

corrections to these relations from the same loop effects needed to raise the physical higgs

mass above the LEP bounds.

B. R-Symmetry Violating Decays

In the body of this paper, we focused on the setup in Fig. 2 where sector 2 preserves an

R-symmetry. If the sector 2 does not preserve an R-symmetry, then there are many more

allowed operators that can mediate the decay of a bino LOSP to the uneaten goldstino.

They are exactly those previously given for the gravitino in Sec. 5.1, except with the

replacement of G̃L with ζ and with all soft masses tilded.

A decay to photon at tree-level is now allowed through the usual operator

O5
/R,B =

iM̃1√
2F

λσµνζFµν , (B.1)

with resultant decay rate

Γγ =
M̃2

1m
3
λ cos2 θW

16πF 2
. (B.2)

The couplings of the bino LOSP to the physical higgs h0 and any further couplings to

the Z not already found in O5
/R,B

may be parametrized at the first two orders in mλ/µ as

L = −MZµ sin θW√
2F

[(
C5

net +
mλ

µ
C6

net

)
λζh0 − MZ

µ
C6

net,Zζ
†σ̄µλZµ

]
, (B.3)

– 25 –



with Cnet representing the following linear combinations of Wilson coefficients:

g′√
2
C5

net =
(
C5
R + C5

/R,Hu·Hd

)
cos(α+ β)

− 2C5
/R,Hu

sinβ cosα+ 2C5
/R,Hd

cosβ sinα, (B.4)

g′√
2
C6

net =
(
C6
Hu,1 + C6

Hu,2

)
sinβ cosα−

(
C6
Hd,1

+ C6
Hd,2

)
cosβ sinα

+
(
C6

/R,1 + C6
/R,3

)
sinβ sinα−

(
C6

/R,2 + C6
/R,4

)
cosβ cosα, (B.5)

g′√
2
C6

net,Z = −
(
C6
Hu,1 − C6

Hu,2

)
sin2 β +

(
C6
Hd,1
− C6

Hd,2

)
cos2 β

+
1

2

(
C6

/R,1 − C
6
/R,2 − C

6
/R,3 + C6

/R,4

)
sin 2β. (B.6)

Here, the factors of g′/
√

2 are inserted purely for convenience. In the R-symmetric limit,

all the C/R are of course zero.

For the decay to higgs, the formula Eq. (4.10) for the decay rate still holds, but C5
net

now has contributions proportional to B̃µ and M̃1, as it did in Eq. (5.11):19

C5
net =

(m̃2
Hu
− m̃2

Hd
) sin 2β + 2B̃µ cos 2β

µ2
− M̃1

µ
cos 2β. (B.7)

For the decay to Z, C6
net,Z obtains a term proportional to B̃µ

C6
net,Z = −

m̃2
Hu

sin2 β + m̃2
Hd

cos2 β + B̃µ sin 2β

µ2
, (B.8)

and we must also include the effects of M̃1 from O5
/R,B

to find the full decay rate:

ΓZ =
m3
λM̃

2
1 sin2 θW

16πF 2

(
1− M2

Z

m2
λ

)2

×


1 +

1

2

M2
Z

m2
λ

−
3M2

ZC
6
net,Z

M̃1mλ

+

(
MZC

6
net,Z√

2M̃1

)2(
1 + 2

M2
Z

m2
λ

)
 . (B.9)

For the gravitino, C6
net,Z simplifies to unity at this order due to the tree-order relation

Eq. (A.9), and the complicated expression in Eq. (B.9) simplifies to the same result we

obtained from the supercurrent in Eq. (2.4), as it must. We demonstrated in Sec. 5 that

the decay rate to higgs bosons simplifies similarly and in fact completely cancels at this

order. For an uneaten goldstino, however, such cancellations do not generically occur,

unless the ratio τi ≡ M̃i/Mi is equal for all soft SUSY-breaking mass(-squared) terms Mi.

It is precisely when all the τi are equal that one can make the field redefinition Eq. (5.14)

to make the goldstino couple only derivatively to visible-sector fields. In this limit, it would

19Again, we use the approximation α ≈ β − π/2 from Eq. (A.8), which is appropriate at this order in

mλ/µ. This eliminates a term proportional to B̃µ cos(β − α) in C6
net.
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couple in exactly the same way as the longitudinal gravitino, except with an enhancement

factor of τ2 ∼ cot2 θ. Of course, we should not expect such alignment to occur in general (if

only due to loop corrections), so a generic uneaten goldstino will have branching ratios to

photons, Zs, and higgses of roughly the same order of magnitude, as suggested by Fig. 12.

C. All-Orders Tree-Level Calculation

The higgsino decoupling limit studied in Sec. 4 is convenient for understanding the physical

origin of the counterintuitive LOSP decays, but it is tedious in practice for moderate

values of µ. Instead of integrating out the higgsinos and finding an arbitrarily long series

of operators and associated Wilson coefficients, we may conduct the calculation with the

original lagrangian in the mass eigenstate basis. As long as one can explicitly diagonalize

the 4 × 4 neutralino mass matrix (analytically or numerically), one can perform the full

tree-level calculation to all orders in µ.

To do so, we parametrize the relevant interactions from Eq. (3.5) as follows:

L = −1

2
Mijχiχj + ρiζχi −

1

2
Yijχiχjh

0 + yiζχih
0

+Gijχ
†
i σ̄
µχjZµ + Li iζσ

µνχi∂µZν . (C.1)

In the {λB,λ3,H̃0
d ,H̃0

u} basis, the neutralino mass matrix is [29]

M =




M1 0 −MZcβsW MZsβsW
0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ
MZsβsW −MZsβcW −µ 0


 , (C.2)

the linear mixing with the uneaten goldstino is

ρ =
v√
2F




1
4g
′vM̃1 cos 2β

−1
4gvM̃2 cos 2β

m̃2
Hd
cβ + B̃µsβ

m̃2
Hu
sβ + B̃µcβ


 , (C.3)

the couplings to the physical higgs boson are

Y =
1

2




0 0 g′sα g′cα
0 0 −gsα −gcα
g′sα −gsα 0 0

g′cα −gcα 0 0


 , y =

1√
2F




−M̃1MZsW sin(α+ β)

M̃2MZcW sin(α+ β)

B̃µcα − m̃2
Hd
sα

m̃2
Hu
cα − B̃µsα


 , (C.4)

and the couplings to the Z boson are

G =
g

2cW




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1


 , L =

√
2

F




M̃1sW

−M̃2cW
0

0


 . (C.5)

– 27 –



In the above matrixes, we have used the notation cθ ≡ cos θ and sθ ≡ sin θ, with W

standing for the weak mixing angle θW .

To calculate the decays of the lightest neutralino, we go to the mass eigenstate basis:

M →M ′ = P TMP, (C.6)

with P chosen to make M ′ diagonal. Note that we treat the linear mixing with the uneaten

goldstino as an insertion, which is valid to leading order in 1/F . The other matrices and

vectors rotate as

ρ→ ρ′ = P Tρ, Y → Y ′ = P TY P, (C.7)

and so forth. The full tree-level amplitude for the decay of the lightest neutralino to a

higgs/Z and a goldstino is thus:

Γh0 =
mλ

16π

(
y′1 −

∑

i

Y ′1iρ
′
i

mχ0
i

)2(
1− m2

h0

m2
λ

)2

, (C.8)

ΓZ =
m3
λ

16π

(
1− M2

Z

m2
λ

)2
(
L
′2
1

2

(
1 +

1

2

M2
Z

m2
λ

)
− 3

L′1K
′

mλ
+
K ′2

M2
Z

(
1 + 2

M2
Z

m2
λ

))
, (C.9)

where the neutralino masses are labeled by mχ0
i
, the LOSP mass is mλ ≡ mχ0

1
, and

K ′ ≡
∑

i

G′1iρ
′
i

mχ0
i

. (C.10)

A similar calculation for difermion production is beyond the scope of this work; it

would in general need to include the effects of A-terms, finite fermion masses, and sfermion

mixing for the third generation, as well as possible interference from difermions produced

by off-shell Z bosons.
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