575 research outputs found
Rice Responses to Water Limiting Conditions: Improving Stress Management by Exploiting Genetics and Physiological Processes
Water-limiting conditions can severely affect rice yield. Therefore, increasing plant tolerance
to water stress is a priority for many rice breeding programs. However, improving rice tolerance
to this abiotic stress comes with several complications related to the seeding practices, the adopted
water management system and the growth stage where water stress occurs. For this reason, it is
challenging to outline single ideotypes showing traits suitable for overcoming drought at different
times during the life cycle of rice in diverse cropping ecosystems. The current knowledge of genomics
and biochemicals can contribute to drawing rice ideotypes flexible towards diverse water availability
conditions. Traits identified in accessions of the wild ancestor of cultivated rice, as well as other wild
rice species, in Oryza glaberrima and weedy rice were demonstrated to confer enhanced tolerance to
water stress, while screenings of cultivated rice germplasms identified several genes/loci improving
water stress resistance. New frontiers are represented by the dissection of the epigenetic control of
stress tolerance and the implementation of the contribution of favorable microbiota. Innovative breeding
technologies, whose feasibility is related to advancements in genomic analyses, are contributing
to enhancing the knowledge-based development of water stress-tolerant rice varieties
Marker-assisted introgression of the salinity tolerance locus Saltol in temperate japonica rice
Background Rice is one of the most salt sensitive crops at seedling, early vegetative and reproductive stages. Varieties
with salinity tolerance at seedling stage promote an efficient growth at early stages in salt affected soils, leading
to healthy vegetative growth that protects crop yield. Saltol major QTL confers capacity to young rice plants growing
under salt condition by maintaining a low Na+/
K+ molar ratio in the shoots.
Results Marker-assisted backcross (MABC) procedure was adopted to transfer Saltol locus conferring salt tolerance
at seedling stage from donor indica IR64-Saltol to two temperate japonica varieties, Vialone Nano and Onice. Forward
and background selections were accomplished using polymorphic KASP markers and a final evaluation of genetic
background recovery of the selected lines was conducted using 15,580 SNP markers obtained from Genotyping by
Sequencing. Three MABC generations followed by two selfing, allowed the identification of introgression lines achieving
a recovery of the recurrent parent (RP) genome up to 100% (based on KASP markers) or 98.97% (based on GBS).
Lines with highest RP genome recovery (RPGR) were evaluated for agronomical-phenological traits in field under nonsalinized
conditions. VN1, VN4, O1 lines were selected considering the agronomic evaluations and the RPGR% results
as the most interesting for commercial exploitation. A physiological characterization was conducted by evaluating
salt tolerance under hydroponic conditions. The selected lines showed lower standard evaluation system (SES) scores:
62% of VN4, and 57% of O1 plants reaching SES 3 or SES 5 respectively, while only 40% of Vialone Nano and 25% of
Onice plants recorded scores from 3 to 5, respectively. VN1, VN4 and O1 showed a reduced electrolyte leakage values,
and limited negative effects on relative water content and shoot/root fresh weight ratio.
Conclusion The Saltol locus was successfully transferred to two elite varieties by MABC in a time frame of three years.
The application of background selection until BC3F3
allowed the selection of lines with a RPGR up to 98.97%. Physiological
evaluations for the selected lines indicate an improved salinity tolerance at seedling stage. The results supported
the effectiveness of the Saltol locus in temperate japonica and of the MABC procedure for recovering of the RP
favorable traits
Power efficiency of outer hair cell somatic electromotility
© 2009 Rabbitt et al. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Computational Biology 5 (2009): e1000444, doi:10.1371/journal.pcbi.1000444.Cochlear outer hair cells (OHCs) are fast biological motors that serve to enhance the vibration of the organ of Corti and increase the sensitivity of the inner ear to sound. Exactly how OHCs produce useful mechanical power at auditory frequencies, given their intrinsic biophysical properties, has been a subject of considerable debate. To address this we formulated a mathematical model of the OHC based on first principles and analyzed the power conversion efficiency in the frequency domain. The model includes a mixture-composite constitutive model of the active lateral wall and spatially distributed electro-mechanical fields. The analysis predicts that: 1) the peak power efficiency is likely to be tuned to a specific frequency, dependent upon OHC length, and this tuning may contribute to the place principle and frequency selectivity in the cochlea; 2) the OHC power output can be detuned and attenuated by increasing the basal conductance of the cell, a parameter likely controlled by the brain via the efferent system; and 3) power output efficiency is limited by mechanical properties of the load, thus suggesting that impedance of the organ of Corti may be matched regionally to the OHC. The high power efficiency, tuning, and efferent control of outer hair cells are the direct result of biophysical properties of the cells, thus providing the physical basis for the remarkable sensitivity and selectivity of hearing.This work was supported by NIDCD R01 DC04928 (Rabbitt), NIDCD R01 DC00384 (Brownell) and NASA Ames GSRA56000135 (Breneman)
The effects of irrigation on groundwater quality and quantity in a human-modified hydro-system: The Oglio River basin, Po Plain, northern Italy
For several hundred years, farming in the Po Plain of Italy (46,000 km2, 20 million inhabitants) has been supported by intensive surface irrigation with lake and river water. Despite the longevity of irrigation, its effects on the quality and quantity of groundwater is poorly known and so is investigated here through seasonal measurements of hydraulic heads and water quality in groundwaters, rivers, lake, springs and rainwaters. In the north of the study region, an unconfined coarse-grained alluvial aquifer, infiltration of surface irrigation water, sourced from the Oglio River and low in NO3, contributes much to aquifer recharge (up to 88%, as evidenced by a δ2H-Cl/Br mixing model) and has positive effects on groundwater quality by diluting high concentrations of NO3 (decrease by 17% between June and September). This recharge also helps to maintain numerous local springs that form important local micro-environments. Any increase in water-use efficiency in irrigation will reduce this recharge, imperil the spring environments, and lessen the dilution of NO3 leading to increasing NO3 concentrations in groundwater. These findings can be extended by analogy to the entire Po Plain region and other surface-water-irrigated systems worldwide where inefficient irrigation methods are used and similar hydrogeological features occur
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
X-ray emission from the Sombrero galaxy: discrete sources
We present a study of discrete X-ray sources in and around the
bulge-dominated, massive Sa galaxy, Sombrero (M104), based on new and archival
Chandra observations with a total exposure of ~200 ks. With a detection limit
of L_X = 1E37 erg/s and a field of view covering a galactocentric radius of ~30
kpc (11.5 arcminute), 383 sources are detected. Cross-correlation with Spitler
et al.'s catalogue of Sombrero globular clusters (GCs) identified from HST/ACS
observations reveals 41 X-rays sources in GCs, presumably low-mass X-ray
binaries (LMXBs). We quantify the differential luminosity functions (LFs) for
both the detected GC and field LMXBs, whose power-low indices (~1.1 for the
GC-LF and ~1.6 for field-LF) are consistent with previous studies for
elliptical galaxies. With precise sky positions of the GCs without a detected
X-ray source, we further quantify, through a fluctuation analysis, the GC LF at
fainter luminosities down to 1E35 erg/s. The derived index rules out a
faint-end slope flatter than 1.1 at a 2 sigma significance, contrary to recent
findings in several elliptical galaxies and the bulge of M31. On the other
hand, the 2-6 keV unresolved emission places a tight constraint on the field
LF, implying a flattened index of ~1.0 below 1E37 erg/s. We also detect 101
sources in the halo of Sombrero. The presence of these sources cannot be
interpreted as galactic LMXBs whose spatial distribution empirically follows
the starlight. Their number is also higher than the expected number of cosmic
AGNs (52+/-11 [1 sigma]) whose surface density is constrained by deep X-ray
surveys. We suggest that either the cosmic X-ray background is unusually high
in the direction of Sombrero, or a distinct population of X-ray sources is
present in the halo of Sombrero.Comment: 11 figures, 5 tables, ApJ in pres
Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at sqrt(s[NN]) = 2.76 TeV
The azimuthal anisotropy of charged particles in PbPb collisions at
nucleon-nucleon center-of-mass energy of 2.76 TeV is measured with the CMS
detector at the LHC over an extended transverse momentum (pt) range up to
approximately 60 GeV. The data cover both the low-pt region associated with
hydrodynamic flow phenomena and the high-pt region where the anisotropies may
reflect the path-length dependence of parton energy loss in the created medium.
The anisotropy parameter (v2) of the particles is extracted by correlating
charged tracks with respect to the event-plane reconstructed by using the
energy deposited in forward-angle calorimeters. For the six bins of collision
centrality studied, spanning the range of 0-60% most-central events, the
observed v2 values are found to first increase with pt, reaching a maximum
around pt = 3 GeV, and then to gradually decrease to almost zero, with the
decline persisting up to at least pt = 40 GeV over the full centrality range
measured.Comment: Replaced with published version. Added journal reference and DO
Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy
A search for new physics is performed in events with two same-sign isolated
leptons, hadronic jets, and missing transverse energy in the final state. The
analysis is based on a data sample corresponding to an integrated luminosity of
4.98 inverse femtobarns produced in pp collisions at a center-of-mass energy of
7 TeV collected by the CMS experiment at the LHC. This constitutes a factor of
140 increase in integrated luminosity over previously published results. The
observed yields agree with the standard model predictions and thus no evidence
for new physics is found. The observations are used to set upper limits on
possible new physics contributions and to constrain supersymmetric models. To
facilitate the interpretation of the data in a broader range of new physics
scenarios, information on the event selection, detector response, and
efficiencies is provided.Comment: Published in Physical Review Letter
Compressed representation of a partially defined integer function over multiple arguments
In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
- …