159 research outputs found

    Star formation in high-redshift quasars: excess [O II] emission in the radio-loud population

    Get PDF
    We investigate the [O II] emission line properties of 18,508 quasars at z<1.6 drawn from the Sloan Digital Sky Survey (SDSS) quasar sample. The quasar sample has been separated into 1,692 radio-loud and 16,816 radio-quiet quasars (RLQs and RQQs hereafter) matched in both redshift and i'-band absolute magnitude. We use the [O II]\lambda3726+3729 line as an indicator of star formation. Based on these measurements we find evidence that star-formation activity is higher in the RLQ population. The mean equivalent widths (EW) for [O II] are EW([O II])_RL=7.80\pm0.30 \AA, and EW([O II])_RQ=4.77\pm0.06 \AA, for the RLQ and RQQ samples respectively. The mean [O II] luminosities are \log[L([O II])_RL/W]=34.31\pm0.01 and \log[L([O II])_RQ/W]=34.192\pm0.004 for the samples of RLQs and RQQs respectively. Finally, to overcome possible biases in the EW measurements due to the continuum emission below the [O II] line being contaminated by young stars in the host galaxy, we use the ratio of the [O II] luminosity to rest-frame i'-band luminosity, in this case, we find for the RLQs \log[L([O II])_RL/L_opt]=-3.89\pm0.01 and \log[L([O II])_RQ/L_opt]=-4.011\pm0.004 for RQQs. However the results depend upon the optical luminosity of the quasar. RLQs and RQQs with the same high optical luminosity \log(L_opt/W)>38.6, tend to have the same level of [O II] emission. On the other hand, at lower optical luminosities \log(L_opt/W)<38.6, there is a clear [O II] emission excess for the RLQs. As an additional check of our results we use the [O III] emission line as a tracer of the bolometric accretion luminosity, instead of the i'-band absolute magnitude, and we obtain similar results. Radio jets appear to be the main reason for the [O II] emission excess in the case of RLQs. In contrast, we suggest AGN feedback ensures that the two populations acquire the same [O II] emission at higher optical luminosities.Comment: 12 pages, 9 figures, accepted for publication in MNRA

    A Population of Dust-rich Quasars at z ~ 1.5

    Get PDF
    We report Herschel SPIRE (250, 350, and 500 μm) detections of 32 quasars with redshifts 0.5 ≤z < 3.6 from the Herschel Multi-tiered Extragalactic Survey (HerMES). These sources are from a MIPS 24 μm flux-limited sample of 326 quasars in the Lockman Hole Field. The extensive multi-wavelength data available in the field permit construction of the rest-frame spectral energy distributions (SEDs) from ultraviolet to the mid-infrared for all sources, and to the far-infrared (FIR) for the 32 objects. Most quasars with Herschel FIR detections show dust temperatures in the range of 25-60 K, with a mean of 34 K. The FIR luminosities range from 10^(11.3) to 10^(13.5) L_☉, qualifying most of their hosts as ultra- or hyper-luminous infrared galaxies. These FIR-detected quasars may represent a dust-rich population, but with lower redshifts and fainter luminosities than quasars observed at ~1 mm. However, their FIR properties cannot be predicted from shorter wavelengths (0.3-20 μm, rest frame), and the bolometric luminosities derived using the 5100 Å index may be underestimated for these FIR-detected quasars. Regardless of redshift, we observed a decline in the relative strength of FIR luminosities for quasars with higher near-infrared luminosities

    The Chandra Multi-Wavelength Project: Optical Spectroscopy and the Broadband Spectral Energy Distributions of X-ray Selected AGN

    Get PDF
    From optical spectroscopy of X-ray sources observed as part of ChaMP, we present redshifts and classifications for a total of 1569 Chandra sources from our targeted spectroscopic follow up using the FLWO, SAAO, WIYN, CTIO, KPNO, Magellan, MMT and Gemini telescopes, and from archival SDSS spectroscopy. We classify the optical counterparts as 50% BLAGN, 16% NELG, 14% ALG, and 20% stars. We detect QSOs out to z~5.5 and galaxies out to z~3. We have compiled extensive photometry from X-ray to radio bands. Together with our spectroscopic information, this enables us to derive detailed SEDs for our extragalactic sources. We fit a variety of templates to determine bolometric luminosities, and to constrain AGN and starburst components where both are present. While ~58% of X-ray Seyferts require a starburst event to fit observed photometry only 26% of the X-ray QSO population appear to have some kind of star formation contribution. This is significantly lower than for the Seyferts, especially if we take into account torus contamination at z>1 where the majority of our X-ray QSOs lie. In addition, we observe a rapid drop of the percentage of starburst contribution as X-ray luminosity increases. This is consistent with the quenching of star formation by powerful QSOs, as predicted by the merger model, or with a time lag between the peak of star formation and QSO activity. We have tested the hypothesis that there should be a strong connection between X-ray obscuration and star-formation but we do not find any association between X-ray column density and star formation rate both in the general population or the star-forming X-ray Seyferts. Our large compilation also allows us to report here the identification of 81 XBONG, 78 z>3 X-ray sources and 8 Type-2 QSO candidates. Also we have identified the highest redshift (z=5.4135) X-ray selected QSO with optical spectroscopy.Comment: 17 pages, 16 figures, accepted for publication in ApJS. Full data table and README file can be found online at http://hea-www.harvard.edu/~pgreen/Papers.htm

    Herschel-ATLAS: Far-infrared properties of radio-loud and radio-quiet quasars

    Get PDF
    This is pre-copyedited, author-produced pdf of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record, E. Kalfountzou, et al., ‘Herschel-ATLAS: Far-infrared properties of radio-loud and radio-quiet quasars’, MNRAS, Vol 42(2): 1181-1196, first published online June 11, 2014, is available online via doi: 10.1093/mnras/stu782 Published by Oxford University Press on behalf of the Royal Astronomical Society.We have constructed a sample of radio-loud and radio-quiet quasars from the Faint Images Radio Sky at Twenty-one centimetres and the Sloan Digital Sky Survey Data Release 7, over the Herschel-ATLAS Phase 1 area (9h, 12h and 14 h . 5 ). Using a stacking analysis, we find a significant correlation between the far-infrared (FIR) luminosity and 1.4-GHz luminosity for radio-loud quasars. Partial correlation analysis confirms the intrinsic correlation after removing the redshift contribution, while for radio-quiet quasars, no partial correlation is found. Using a single-temperature grey-body model, we find a general trend of lower dust temperatures in case of radio-loud quasars compared to radio-quiet quasars. Also, radio-loud quasars are found to have almost constant mean values of dust mass along redshift and optical luminosity bins. In addition, we find that radio-loud quasars at lower optical luminosities tend to have on average higher FIR and 250-μm luminosity with respect to radio-quiet quasars with the same optical luminosites. Even if we use a two-temperature grey-body model to describe the FIR data, the FIR luminosity excess remains at lower optical luminosities. These results suggest that powerful radio jets are associated with star formation especially at lower accretion ratesPeer reviewe

    On the origin of M81 group extended dust emission

    Get PDF
    Galactic cirrus emission at far-infrared wavelengths affects many extragalactic observations. Separating this emission from that associated with extragalactic objects is both important and difficult. In this paper we discuss a particular case, the M81 group, and the identification of diffuse structures prominent in the infrared, but also detected at optical wavelengths. The origin of these structures has previously been controversial, ranging from them being the result of a past interaction between M81 and M82 or due to more local Galactic emission. We show that over an order of a few arcmin scales, the far-infrared (Herschel 250 mu m) emission correlates spatially very well with a particular narrow-velocity (2-3 km s(-1)) component of the Galactic HI. We find no evidence that any of the far-infrared emission associated with these features actually originates in the M81 group. Thus we infer that the associated diffuse optical emission must be due to galactic light-back scattered off dust in our galaxy. Ultraviolet observations pick out young stellar associations around M81, but no detectable far-infrared emission. We consider in detail one of the Galactic cirrus features, finding that the far-infrared HI relation breaks down below arcmin scales and that at smaller scales there can be quite large dust-temperature variation

    The Herschel Multi-tiered Extragalactic Survey: HerMES

    Get PDF
    The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \mu m), and Herschel-PACS (at 100 and 160 \mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5\sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.Comment: 23 pages, 17 figures, 9 Tables, MNRAS accepte

    SPIRE imaging of M82: cool dust in the wind and tidal streams

    Get PDF
    M82 is a unique representative of a whole class of galaxies, starbursts with superwinds, in the Very Nearby Galaxy Survey with Herschel. In addition, its interaction with the M81 group has stripped a significant portion of its interstellar medium from its disk. SPIRE maps now afford better characterization of the far-infrared emission from cool dust outside the disk, and sketch a far more complete picture of its mass distribution and energetics than previously possible. They show emission coincident in projection with the starburst wind and in a large halo, much more extended than the PAH band emission seen with Spitzer. Some complex substructures coincide with the brightest PAH filaments, and others with tidal streams seen in atomic hydrogen. We subtract the far-infrared emission of the starburst and underlying disk from the maps, and derive spatially-resolved far-infrared colors for the wind and halo. We interpret the results in terms of dust mass, dust temperature, and global physical conditions. In particular, we examine variations in the dust physical properties as a function of distance from the center and the wind polar axis, and conclude that more than two thirds of the extraplanar dust has been removed by tidal interaction, and not entrained by the starburst wind.Comment: accepted in A&A Herschel special issu

    The Chandra COSMOS Survey: III. Optical and Infrared Identification of X-ray Point Sources

    Get PDF
    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.9 deg^2 of the COSMOS field down to limiting depths of 1.9 10^-16 erg cm^-2 s-1 in the 0.5-2 keV band, 7.3 10^-16 erg cm^-2 s^-1 in the 2-10 keV band, and 5.7 10^-16 erg cm^-2 s-1 in the 0.5-10 keV band. In this paper we report the i, K and 3.6micron identifications of the 1761 X-ray point sources. We use the likelihood ratio technique to derive the association of optical/infrared counterparts for 97% of the X-ray sources. For most of the remaining 3%, the presence of multiple counterparts or the faintness of the possible counterpart prevented a unique association. For only 10 X-ray sources we were not able to associate a counterpart, mostly due to the presence of a very bright field source close by. Only 2 sources are truly empty fields. Making use of the large number of X-ray sources, we update the "classic locus" of AGN and define a new locus containing 90% of the AGN in the survey with full band luminosity >10^42 erg/s. We present the linear fit between the total i band magnitude and the X-ray flux in the soft and hard band, drawn over 2 orders of magnitude in X-ray flux, obtained using the combined C-COSMOS and XMM-COSMOS samples. We focus on the X-ray to optical flux ratio (X/O) and we test its known correlation with redshift and luminosity, and a recently introduced anti-correlation with the concentration index (C). We find a strong anti-correlation (though the dispersion is of the order of 0.5 dex) between C and X/O, computed in the hard band, and that 90% of the obscured AGN in the sample with morphological information live in galaxies with regular morphology (bulgy and disky/spiral), suggesting that secular processes govern a significant fraction of the BH growth at X-ray luminosities of 10^43- 10^44.5 erg/s.Comment: 21 pages, 17 figures, 4 tables; accepted for publication in ApJS. The catalog is available at the urls listed in the pape

    EXIT-chart aided hybrid multiuser detector design for frequency-domain-spread chip-interleaved MC-CDMA

    Get PDF
    With the advent of EXtrinsic Information Transfer (EXIT) charts, we are capable of analyzing, predicting and visually comparing the convergence behaviours of different turbo Multi-User Detectector (MUD)s. The different MUDs have diverse EXIT characteristics and hence their superposition allows us to create a combined EXIT curve, which closely matches that of the channel decoder. Hence a near-capacity operation is facilitated by combining the benifits of different MUDs and therefore to create a superior MUD. Thus in this contribution, we propose a novel hybrid MUD combining scheme, which combines the advantages of a high performance and low complexity in form of an advanced hybrid MUD solution. The transmitted bits are unknown at the receiver, hence it is not feasible to directly evaluate the mutual information gain of the iterative MUD in consecutive iterations, hence we propose a realistic algorithm for estimating this mutual information gain, which is then used for activating the most appropriate constituent MUD as and when it is necessary. The constituent MUDs are the Matched Filter (MF) based Soft Interference Cancellation (SoIC) and the optimum Bayesian MUDs, which are invoked in the scenario of Frequency-Domain-Spread Chip-Interleaved (FDSCI) Multiple Carrier Code Division Multiple Access (MC-CDMA). The resultant hybrid MUD is capable of outperforming both the MF-SoIC and Bayesian turbo MUDs in the terms of the attainable complexity and Bit-Error-Rate (BER) performance

    Spectroscopic Identifications of SWIRE sources in ELAIS-N1

    Full text link
    We present the largest spectroscopic follow-up performed in SWIRE ELAIS-N1. We were able to determine redshifts for 289 extragalactic sources. The values of spectroscopic redshifts of the latter have been compared with the estimated values from our photometric redshift code with very good agreement between the two for both galaxies and quasars. Six of the quasars are hyperluminous infrared galaxies all of which are broad line AGN. We have performed emission line diagnostics for 30 sources in order to classify them into star-forming, Seyferts, composite and LINER and compare the results to the predictions from our SED template fitting methods and mid-IR selection methods.Comment: 11 pages, 8 figures, accepted for publication in MNRA
    corecore