158 research outputs found

    Gamma-Ray Bursts from tidally spun-up Wolf-Rayet stars?

    Full text link
    The collapsar model requires rapidly rotating Wolf-Rayet stars as progenitors of long gamma-ray bursts. However, Galactic Wolf-Rayet stars rapidly lose angular momentum due to their intense stellar winds. We investigate whether the tidal interaction of a Wolf-Rayet star with a compact object in a binary system can spin up the Wolf-Rayet star enough to produce a collapsar. We compute the evolution of close Wolf-Rayet binaries, including tidal angular momentum exchange, differential rotation of the Wolf-Rayet star, internal magnetic fields, stellar wind mass loss, and mass transfer. The Wolf-Rayet companion is approximated as a point mass. We then employ a population synthesis code to infer the occurrence rates of the various relevant binary evolution channels. We find that the simple scenario -- i.e., the Wolf-Rayet star being tidally spun up and producing a collapsar -- does not occur at solar metallicity and may only occur with low probability at low metallicity. It is limited by the widening of the binary orbit induced by the strong Wolf-Rayet wind or by the radius evolution of the Wolf-Rayet star that most often leads to a binary merger. The tidal effects enhance the merger rate of Wolf-Rayet stars with black holes such that it becomes comparable to the occurrence rate of long gamma-ray bursts.Comment: 9 pages, 11 figures, accepted for publication in A&

    Cygnus X-3 and the problem of the missing Wolf-Rayet X-ray binaries

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Gravitational wave detection using pulsars: status of the Parkes Pulsar Timing Array project

    Get PDF
    The first direct detection of gravitational waves may be made through observations of pulsars. The principal aim of pulsar timing array projects being carried out worldwide is to detect ultra-low frequency gravitational waves (f ~ 10^-9 to 10^-8 Hz). Such waves are expected to be caused by coalescing supermassive binary black holes in the cores of merged galaxies. It is also possible that a detectable signal could have been produced in the inflationary era or by cosmic strings. In this paper we review the current status of the Parkes Pulsar Timing Array project (the only such project in the Southern hemisphere) and compare the pulsar timing technique with other forms of gravitational-wave detection such as ground- and space-based interferometer systems.Comment: Accepted for publication in PAS

    The Sensitivity of the Parkes Pulsar Timing Array to Individual Sources of Gravitational Waves

    Get PDF
    We present the sensitivity of the Parkes Pulsar Timing Array to gravitational waves emitted by individual super-massive black-hole binary systems in the early phases of coalescing at the cores of merged galaxies. Our analysis includes a detailed study of the effects of fitting a pulsar timing model to non-white timing residuals. Pulsar timing is sensitive at nanoHertz frequencies and hence complementary to LIGO and LISA. We place a sky-averaged constraint on the merger rate of nearby (z<0.6z < 0.6) black-hole binaries in the early phases of coalescence with a chirp mass of 10^{10}\,\rmn{M}_\odot of less than one merger every seven years. The prospects for future gravitational-wave astronomy of this type with the proposed Square Kilometre Array telescope are discussed.Comment: fixed error in equation (4). [13 pages, 6 figures, 1 table, published in MNRAS

    Diagnostic DNA Methylation Biomarkers for Renal Cell Carcinoma:A Systematic Review

    Get PDF
    CONTEXT: The 5-yr survival of early-stage renal cell carcinoma (RCC) is approximately 93%, but once metastasised, the 5-yr survival plummets to 12%, indicating that early RCC detection is crucial to improvement in survival. DNA methylation biomarkers have been suggested to be of potential diagnostic value; however, their current state of clinical translation is unclear and a comprehensive overview is lacking. OBJECTIVE: To systematically review and summarise all literature regarding diagnostic DNA methylation biomarkers for RCC. EVIDENCE ACQUISITION: We performed a systematic literature review of PubMed, EMBASE, Medline, and Google Scholar up to January 2019, according to the Preferred Reporting Items for Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies (PRISMA-DTA) guidelines. Included studies were scored according to the Standards for Reporting of Diagnostic Accuracy Studies (STARD) criteria. Forest plots were generated to summarise diagnostic performance of all biomarkers. Level of evidence (LoE) and potential risk of bias were determined for all included studies. EVIDENCE SYNTHESIS: After selection, 19 articles reporting on 44 diagnostic DNA methylation biomarkers and 11 multimarker panels were included; however, only 15 biomarkers were independently validated. STARD scores varied from 4 to 13 out of 23 points, with a median of 10 points. Large variation in subgroups, methods, and primer locations was observed. None of the reported biomarkers exceeded LoE III, and the majority of studies reported inadequately. CONCLUSIONS: None of the reported biomarkers exceeded LoE III, indicating their limited clinical utility. Moreover, study reproducibility and further development of these RCC biomarkers are greatly hampered by inadequate reporting. PATIENT SUMMARY: In this report, we reviewed whether specific biomarkers could be used to diagnose the most common form of kidney cancer. We conclude that due to limited evidence and reporting inconsistencies, none of these biomarkers can be used in clinical practice, and further development towards clinical use is hindered

    CATT voor de boomkwekerij - pilotproeven met sierheesterstek en vaste planten laten kansen voor de toekomst zien

    Get PDF
    In dit project hebben we het perspectief voor CATT-behandelingen (Controlled Atmosphere Temperature Treatment) voor boomkwekerijgewassen onderzocht. Deze methode combineert een CA-behandeling (gewijzigde luchtsamenstelling door aanpassing van CO2-en O2-condities) met een temperatuurbehandeling. Hiervoor wordt het plantmateriaal gedurende een bepaalde periode in een gasdichte cel bewaard. CATT-behandelingen zijn een duurzame vorm van plaagbestrijding omdat er geen chemische middelen aan te pas komen en omdat er geringe kans is op resistentieontwikkeling van de plaagorganismen. Bovendien kan deze methode zeer snel in praktijk worden geĂŻmplementeerd omdat deze geen wettelijke toelating behoeft. Zo zijn in korte tijd CATT-behandelingen ontwikkeld voor het bestrijden van plagen in aardbei, die nu succesvol in praktijk worden toegepast. In dit project hebben we twee sierheesters in de stekfase (Buxus sempervirens en Ilex altaclerensis) en vier soorten vaste planten in de winterbewaring (Astilbe japonica, Geranium sanguineum, Phlox paniculata, Paeonia officinalis) behandeld en vergeleken met onbehandelde controles

    Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data

    Full text link
    Direct detection of low-frequency gravitational waves (10−9−10−810^{-9} - 10^{-8} Hz) is the main goal of pulsar timing array (PTA) projects. One of the main targets for the PTAs is to measure the stochastic background of gravitational waves (GWB) whose characteristic strain is expected to approximately follow a power-law of the form hc(f)=A(f/yr−1)αh_c(f)=A (f/\hbox{yr}^{-1})^{\alpha}, where ff is the gravitational-wave frequency. In this paper we use the current data from the European PTA to determine an upper limit on the GWB amplitude AA as a function of the unknown spectral slope α\alpha with a Bayesian algorithm, by modelling the GWB as a random Gaussian process. For the case α=−2/3\alpha=-2/3, which is expected if the GWB is produced by supermassive black-hole binaries, we obtain a 95% confidence upper limit on AA of 6×10−156\times 10^{-15}, which is 1.8 times lower than the 95% confidence GWB limit obtained by the Parkes PTA in 2006. Our approach to the data analysis incorporates the multi-telescope nature of the European PTA and thus can serve as a useful template for future intercontinental PTA collaborations.Comment: 14 pages, 8 figures, 3 tables, mnras accepte

    Cygnus X-3 and the problem of the missing Wolf-Rayet X-ray binaries

    Get PDF
    Cygnus X-3 is a strong X-ray source (L_X about 10^38 erg/s) which is thought to consist of a compact object, accreting matter from a helium star. We find analytically that the estimated ranges of mass-loss rate and orbital-period derivative for Cyg X-3 are consistent with two models: i) the system is detached and the mass loss from the system comes from the stellar wind of a massive helium star, of which only a fraction that allows for the observed X-ray luminosity is accreted, or ii) the system is semidetached and a Roche-lobe-overflowing low- or moderate-mass helium donor transfers mass to the compact object, followed by ejection of its excess over the Eddington rate from the system. These analytical results appear to be consistent with evolutionary calculations. By means of population synthesis we find that currently in the Galaxy there may exist ~1 X-ray binary with a black hole that accretes from a >~ 7 MSun Wolf-Rayet star and ~1 X-ray binary in which a neutron star accretes matter from a Roche-lobe-overflowing helium star with mass <~ 1.5 MSun. Cyg X-3 is probably one of these systems.Comment: 12 pages, 6 figures, accepted by A&

    A precise mass measurement of the intermediate-mass binary pulsar PSR J1802-2124

    Full text link
    PSR J1802-2124 is a 12.6-ms pulsar in a 16.8-hour binary orbit with a relatively massive white dwarf (WD) companion. These properties make it a member of the intermediate-mass class of binary pulsar (IMBP) systems. We have been timing this pulsar since its discovery in 2002. Concentrated observations at the Green Bank Telescope, augmented with data from the Parkes and Nancay observatories, have allowed us to determine the general relativistic Shapiro delay. This has yielded pulsar and white dwarf mass measurements of 1.24(11) and 0.78(4) solar masses (68% confidence), respectively. The low mass of the pulsar, the high mass of the WD companion, the short orbital period, and the pulsar spin period may be explained by the system having gone through a common-envelope phase in its evolution. We argue that selection effects may contribute to the relatively small number of known IMBPs.Comment: 9 pages, 4 figures, 3 tables, accepted for publication in the Astrophysical Journa

    C2D Spitzer-IRS spectra of disks around T Tauri stars V. Spectral decomposition

    Get PDF
    (Abridged) Dust particles evolve in size and lattice structure in protoplanetary disks, due to coagulation, fragmentation and crystallization, and are radially and vertically mixed in disks. This paper aims at determining the mineralogical composition and size distribution of the dust grains in disks around 58 T Tauri stars observed with Spitzer/IRS. We present a spectral decomposition model that reproduces the IRS spectra over the full spectral range. The model assumes two dust populations: a warm component responsible for the 10\mu m emission arising from the disk inner regions and a colder component responsible for the 20-30\mu m emission, arising from more distant regions. We show evidence for a significant size distribution flattening compared to the typical MRN distribution, providing an explanation for the usual boxy 10\mu m feature profile generally observed. We reexamine the crystallinity paradox, observationally identified by Olofsson et al. (2009), and we find a simultaneous enrichment of the crystallinity in both the warm and cold regions, while grain sizes in both components are uncorrelated. Our modeling results do not show evidence for any correlations between the crystallinity and either the star spectral type, or the X-ray luminosity (for a subset of the sample). The size distribution flattening may suggests that grain coagulation is a slightly more effective process than fragmentation in disk atmospheres, and that this imbalance may last over most of the T Tauri phase. This result may also point toward small grain depletion via strong stellar winds or radiation pressure in the upper layers of disk. The non negligible cold crystallinity fractions suggests efficient radial mixing processes in order to distribute crystalline grains at large distances from the central object, along with possible nebular shocks in outer regions of disks that can thermally anneal amorphous grains
    • 

    corecore