7 research outputs found

    Evolutionary History of Tissue Kallikreins

    Get PDF
    The gene family of human kallikrein-related peptidases (KLKs) encodes proteins with diverse and pleiotropic functions in normal physiology as well as in disease states. Currently, the most widely known KLK is KLK3 or prostate-specific antigen (PSA) that has applications in clinical diagnosis and monitoring of prostate cancer. The KLK gene family encompasses the largest contiguous cluster of serine proteases in humans which is not interrupted by non-KLK genes. This exceptional and unique characteristic of KLKs makes them ideal for evolutionary studies aiming to infer the direction and timing of gene duplication events. Previous studies on the evolution of KLKs were restricted to mammals and the emergence of KLKs was suggested about 150 million years ago (mya). In order to elucidate the evolutionary history of KLKs, we performed comprehensive phylogenetic analyses of KLK homologous proteins in multiple genomes including those that have been completed recently. Interestingly, we were able to identify novel reptilian, avian and amphibian KLK members which allowed us to trace the emergence of KLKs 330 mya. We suggest that a series of duplication and mutation events gave rise to the KLK gene family. The prominent feature of the KLK family is that it consists of tandemly and uninterruptedly arrayed genes in all species under investigation. The chromosomal co-localization in a single cluster distinguishes KLKs from trypsin and other trypsin-like proteases which are spread in different genetic loci. All the defining features of the KLKs were further found to be conserved in the novel KLK protein sequences. The study of this unique family will further assist in selecting new model organisms for functional studies of proteolytic pathways involving KLKs

    Functional Role of Kallikrein 6 in Regulating Immune Cell Survival

    Get PDF
    Kallikrein 6 (KLK6) is a newly identified member of the kallikrein family of secreted serine proteases that prior studies indicate is elevated at sites of central nervous system (CNS) inflammation and which shows regulated expression with T cell activation. Notably, KLK6 is also elevated in the serum of multiple sclerosis (MS) patients however its potential roles in immune function are unknown. Herein we specifically examine whether KLK6 alters immune cell survival and the possible mechanism by which this may occur.Using murine whole splenocyte preparations and the human Jurkat T cell line we demonstrate that KLK6 robustly supports cell survival across a range of cell death paradigms. Recombinant KLK6 was shown to significantly reduce cell death under resting conditions and in response to camptothecin, dexamethasone, staurosporine and Fas-ligand. Moreover, KLK6-over expression in Jurkat T cells was shown to generate parallel pro-survival effects. In mixed splenocyte populations the vigorous immune cell survival promoting effects of KLK6 were shown to include both T and B lymphocytes, to occur with as little as 5 minutes of treatment, and to involve up regulation of the pro-survival protein B-cell lymphoma-extra large (Bcl-XL), and inhibition of the pro-apoptotic protein Bcl-2-interacting mediator of cell death (Bim). The ability of KLK6 to promote survival of splenic T cells was also shown to be absent in cell preparations derived from PAR1 deficient mice.KLK6 promotes lymphocyte survival by a mechanism that depends in part on activation of PAR1. These findings point to a novel molecular mechanism regulating lymphocyte survival that is likely to have relevance to a range of immunological responses that depend on apoptosis for immune clearance and maintenance of homeostasis

    A chimeric Cre recombinase with regulated directionality

    No full text
    From bacterial viruses to humans, site-specific recombination and transposition are the major pathways for rearranging genomes on both long- and short-time scales. The site-specific pathways can be divided into 2 groups based on whether they are stochastic or regulated. Recombinases Cre and λ Int are well-studied examples of each group, respectively. Both have been widely exploited as powerful and flexible tools for genetic engineering: Cre primarily in vivo and λ Int primarily in vitro. Although Cre and Int use the same mechanism of DNA strand exchange, their respective reaction pathways are very different. Cre-mediated recombination is bidirectional, unregulated, does not require accessory proteins, and has a minimal symmetric DNA target. We show that when Cre is fused to the small N-terminal domain of Int, the resulting chimeric Cre recombines complex higher-order DNA targets comprising >200 bp encoding 16 protein-binding sites. This recombination requires the IHF protein, is unidirectional, and is regulated by the relative levels of the 3 accessory proteins, IHF, Xis, and Fis. In one direction, recombination depends on the Xis protein, and in the other direction it is inhibited by Xis. It is striking that regulated directionality and complexity can be conferred in a simple chimeric construction. We suggest that the relative ease of constructing a chimeric Cre with these properties may simulate the evolutionary interconversions responsible for the large variety of site-specific recombinases observed in Archaea, Eubacteria, and Eukarya

    Kallikreins on steroids: structure, function and hormonal regulation of prostate-specific antigen and the extended kallikrein locus

    No full text

    Serine Proteases

    No full text
    corecore