31 research outputs found
Cryptic splice-altering variants in MYBPC3 are a prevalent cause of hypertrophic cardiomyopathy
Research lette
Filamin C variants are associated with a distinctive clinical and immunohistochemical arrhythmogenic cardiomyopathy phenotype
Background: Pathogenic variants in the filamin C (FLNC) gene are associated with inherited cardiomyopathies including dilated cardiomyopathy with an arrhythmogenic phenotype. We evaluated FLNC variants in arrhythmogenic cardiomyopathy (ACM) and investigated the disease mechanism at a molecular level. Methods: 120 gene-elusive ACM patients who fulfilled diagnostic criteria for arrhythmogenic right ventricular cardiomyopathy (ARVC) were screened by whole exome sequencing. Fixed cardiac tissue from FLNC variant carriers who had died suddenly was investigated by histology and immunohistochemistry. Results: Novel or rare FLNC variants, four null and five variants of unknown significance, were identified in nine ACM probands (7.5%). In FLNC null variant carriers (including family members, n = 16) Task Force diagnostic electrocardiogram repolarization/depolarization abnormalities were uncommon (19%), echocardiography was normal in 69%, while 56% had >500 ventricular ectopics/24 h or ventricular tachycardia on Holter and 67% had late gadolinium enhancement (LGE) on cardiac magnetic resonance imaging (CMRI). Ten gene positive individuals (63%) had abnormalities on ECG or CMRI that are not included in the current diagnostic criteria for ARVC. Immunohistochemistry showed altered key protein distribution, distinctive from that observed in ARVC, predominantly in the left ventricle. Conclusions: ACM associated with FLNC variants presents with a distinctive phenotype characterized by Holter arrhythmia and LGE on CMRI with unremarkable ECG and echocardiographic findings. Clinical presentation in asymptomatic mutation carriers at risk of sudden death may include abnormalities which are currently non-diagnostic for ARVC. At the molecular level, the pathogenic mechanism related to FLNC appears different to classic forms of ARVC caused by desmosomal mutations. Keywords: ARVC; Arrhythmogenic cardiomyopathy; Filamin C variants; Immunohistochemistry; Late gadolinium enhancement
Comparison of the characteristics at diagnosis and treatment of children with heterozygous familial hypercholesterolaemia (FH) from eight European countries
Background and aims: For children with heterozygous familial hypercholesterolaemia (HeFH), European guidelines recommend consideration of statin therapy by age 8–10 years for those with a low density lipoprotein cholesterol (LDL-C) >3.5 mmol/l, and dietary and lifestyle advice. Here we compare the characteristics and lipid levels in HeFH children from Norway, UK, Netherlands, Belgium, Czech Republic, Austria, Portugal and Greece. Methods: Fully-anonymized data were analysed at the London centre. Differences in registration and on treatment characteristics were compared by standard statistical tests. Results: Data was obtained from 3064 children. The median age at diagnosis differed significantly between countries (range 3–11 years) reflecting differences in diagnostic strategies. Mean (SD) LDL-C at diagnosis was 5.70 (±1.4) mmol/l, with 88% having LDL-C>4.0 mmol/l. The proportion of children older than 10 years at follow-up who were receiving statins varied significantly (99% in Greece, 56% in UK), as did the proportion taking Ezetimibe (0% in UK, 78% in Greece). Overall, treatment reduced LDL-C by between 28 and 57%, however, in those >10 years, 23% of on-treatment children still had LDL-C>3.5 mmol/l and 66% of those not on a statin had LDL-C>3.5 mmol/l. Conclusions: The age of HeFH diagnosis in children varies significantly across 8 countries, as does the proportion of those >10 years being treated with statin and/or ezetimibe. Approximately a quarter of the treated children and almost three quarters of the untreated children older than 10 years still have LDL-C concentrations over 3.5 mmol/l. These data suggest that many children with FH are not receiving the full potential benefit of early identification and appropriate lipid-lowering treatment according to recommendations
RNA sequencing-based transcriptome profiling of cardiac tissue Implicados novela putative disease mechanisms in FLNC-associated arrhythmogenic cardiomyopathy.
Arrhythmogenic cardiomyopathy (ACM) encompasses a group of inherited cardiomyopathies including arrhythmogenic right ventricular cardiomyopathy (ARVC) whose molecular disease mechanism is associated with dysregulation of the canonical WNT signalling pathway. Recent evidence indicates that ARVC and ACM caused by pathogenic variants in the FLNC gene encoding filamin C, a major cardiac structural protein, may have different molecular mechanisms of pathogenesis. We sought to identify dysregulated biological pathways in FLNC-associated ACM. RNA was extracted from seven paraffin-embedded left ventricular tissue samples from deceased ACM patients carrying FLNC variants and sequenced. Transcript levels of 623 genes were upregulated and 486 genes were reduced in ACM in comparison to control samples. The cell adhesion pathway and ILK signalling were among the prominent dysregulated pathways in ACM. Consistent with these findings, transcript levels of cell adhesion genes JAM2, NEO1, VCAM1 and PTPRC were upregulated in ACM samples. Moreover, several actin-associated genes, including FLNC, VCL, PARVB and MYL7, were suppressed, suggesting dysregulation of the actin cytoskeleton. Analysis of the transcriptome for biological pathways predicted activation of inflammation and apoptosis and suppression of oxidative phosphorylation and MTORC1 signalling in ACM. Our data suggests dysregulated cell adhesion and ILK signalling as novel putative pathogenic mechanisms of ACM caused by FLNC variants which are distinct from the postulated disease mechanism of classic ARVC caused by desmosomal gene mutations. This knowledge could help in the design of future gene therapy strategies which would target specific components of these pathways and potentially lead to novel treatments for ACM
Rare disease gene association discovery from burden analysis of the 100,000 Genomes Project data
To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following in silico triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with UCHL1 , and independent confirmatory evidence has recently been published for four more. We highlight a further seven compelling associations: hypertrophic cardiomyopathy with DYSF and SLC4A3 where both genes show high/specific heart expression and existing associations to skeletal dystrophies or short QT syndrome respectively; monogenic diabetes with UNC13A with a known role in the regulation of β cells and a mouse model with impaired glucose tolerance; epilepsy with KCNQ1 where a mouse model shows seizures and the existing long QT syndrome association may be linked; early onset Parkinson's disease with RYR1 with existing links to tremor pathophysiology and a mouse model with neurological phenotypes; anterior segment ocular abnormalities associated with POMK showing expression in corneal cells and with a zebrafish model with developmental ocular abnormalities; and cystic kidney disease with COL4A3 showing high renal expression and prior evidence for a digenic or modifying role in renal disease. Confirmation of all 88 associations would lead to potential diagnoses in 456 molecularly undiagnosed cases within the 100KGP, as well as other rare disease patients worldwide, highlighting the clinical impact of a large-scale statistical approach to rare disease gene discovery
Scleroderma and related disorders: 223. Long Term Outcome in a Contemporary Systemic Sclerosis Cohort
Background: We have previously compared outcome in two groups of systemic sclerosis (SSc) patients with disease onset a decade apart and we reported data on 5 year survival and cumulative incidence of organ disease in a contemporary SSc cohort. The present study examines longer term outcome in an additional cohort of SSc followed for 10 years. Methods: We have examined patients with disease onset between years 1995 and 1999 allowing for at least 10 years of follow-up in a group that has characteristics representative for the patients we see in contemporary clinical practice. Results: Of the 398 patients included in the study, 252 (63.3%) had limited cutaneous (lc) SSc and 146 (36.7%) had diffuse cutaneous (dc) SSc. The proportion of male patients was higher among the dcSSc group (17.1% v 9.9%, p = 0.037) while the mean age of onset was significantly higher among lcSSc patients (50 ± 13 v 46 ± 13 years ± SD, p = 0.003). During a 10 year follow-up from disease onset, 45% of the dcSSc and 21% of the lcSSc subjects developed clinically significant pulmonary fibrosis, p < 0.001. Among them approximately half reached the endpoint within the first 3 years (23% of dcSSc and 10% of lcSSc) and over three quarters within the first 5 years (34% and 16% respectively). There was a similar incidence of pulmonary hypertension (PH) in the two subsets with a steady rate of increase over time. At 10 years 13% of dcSSc and 15% of lcSSc subjects had developed PH (p=0.558), with the earliest cases observed within the first 2 years of disease. Comparison between subjects who developed PH in the first and second 5 years from disease onset demonstrated no difference in demographic or clinical characteristics, but 5-year survival from PH onset was better among those who developed this complication later in their disease (49% v 24%), with a strong trend towards statistical significance (p = 0.058). Incidence of SSc renal crisis (SRC) was significantly higher among the dcSSc patients (12% v 4% in lcSSc, p = 0.002). As previously observed, the rate of development of SRC was highest in the first 3 years of disease- 10% in dcSSc and 3% in lcSSc. All incidences of clinically important cardiac disease developed in the first 5 years from disease onset (7% in dcSSc v 1% in lcSSc, p < 0.001) and remained unchanged at 10 years. As expected, 10-year survival among lcSSc subjects was significantly higher (81%) compared to that of dcSSc patients (70%, p = 0.006). Interestingly, although over the first 5 years the death rate was much higher in the dcSSc cohort (16% v 6% in lcSSc), over the following years it became very similar for both subsets (14% and 13% between years 5 and 10, and 18% and 17% between years 10 and 15 for dcSSc and lcSSc respectively). Conclusions: Even though dcSSc patients have higher incidence for most organ complications compared to lcSSc subjects, the worse survival among them is mainly due to higher early mortality rate. Mortality rate after first 5 years of disease becomes comparable in the two disease subsets. Disclosure statement: The authors have declared no conflicts of interes
X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3
By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins
An organelle-specific protein landscape identifies novel diseases and molecular mechanisms
Contains fulltext :
158967.pdf (publisher's version ) (Open Access)Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine
Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel
Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants
Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study
Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life