395 research outputs found
Production Data for the Population-Environment-Technology (PET) Model
This report describes the production data serving as an input to the Population-Environment-Technology (PET) model (Dalton and Goulder, 2001; Dalton et al., 2008). The PET model is a multi-sector, multi-region computable general equilibrium model of the global economy. We describe the procedures used to develop regional production data for the model. GTAP (Global Trade Analysis Project) represents the major production data source. The document explains the structure of the data and the modifications we make to it, including modifications to the treatment of trade, physical energy quantities, and household consumption
Household Survey Data Used in Calibrating the Population-Environment-Technology Model
The Population-Environment-Technology (PET) model is an inter-temporal general equilibrium model of global scale used to project future energy demand and related CO2 emissions. It can include multiple production and consumption sectors and is well suited to incorporate a heterogeneous population structure. Calibration of general equilibrium models is usually very data intensive. In this report we present the data used in the calibration of the household side of the PET model. We include a description of the household surveys, the process of analyzing both income and consumption data, and a few illustratve results of variations in household characteristics across regions and household types
Multipartite entangled coherent states
We propose a scheme for generating multipartite entangled coherent states via
entanglement swapping, with an example of a physical realization in ion traps.
Bipartite entanglement of these multipartite states is quantified by the
concurrence. We also use the --tangle to compute multipartite entanglement
for certain systems. Finally we establish that these results for entanglement
can be applied to more general multipartite entangled nonorthogonal states.Comment: 7 pages, two figures. We added more detail discussions on the
generation of multipartite entangled coherent states and multipartite
entangelemen
A 15.7-minAM CVn binary discovered in K2
We present the discovery of SDSS J135154.46−064309.0, a short-period variable observed using 30-mincadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 min makes this system the fourth-shortest-period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 min, 16.1121 ± 0.0004 min, and 664.82 ± 0.06 min, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1= 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by Laser Interferometer Space Antenna, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components
Theory of laser ion acceleration from a foil target of nanometers
A theory for laser ion acceleration is presented to evaluate the maximum ion
energy in the interaction of ultrahigh contrast (UHC) intense laser with a
nanometer-scale foil. In this regime the energy of ions may be directly related
to the laser intensity and subsequent electron dynamics. This leads to a simple
analytical expression for the ion energy gain under the laser irradiation of
thin targets. Significantly, higher energies for thin targets than for thicker
targets are predicted. Theory is concretized to the details of recent
experiments which may find its way to compare with these results.Comment: 22 pages 7 figures. will be submitted to NJ
Dynamics of entanglement for coherent excitonic states in a system of two coupled quantum dots and cavity QED
The dynamics of the entanglement for coherent excitonic states in the system
of two coupled large semiconductor quantum dots () mediated by a
single-mode cavity field is investigated. Maximally entangled coherent
excitonic states can be generated by cavity field initially prepared in odd
coherent state. The entanglement of the excitonic coherent states between two
dots reaches maximum when no photon is detected in the cavity. The effects of
the zero-temperature environment on the entanglement of excitonic coherent
state are also studied using the concurrence for two subsystems of the excitonsComment: 7 pages, 6 figure
Proposal of an experimental scheme for realising a translucent eavesdropping on a quantum cryptographic channel
Purpose of this paper is to suggest a scheme, which can be realised with
today's technology and could be used for entangling a probe to a photon qubit
based on polarisation. Using this probe a translucent or a coherent
eavesdropping can be performed.Comment: in pres
Discovery of the Binary Pulsar PSR B1259-63 in Very-High-Energy Gamma Rays around Periastron with H.E.S.S
We report the discovery of very-high-energy (VHE) gamma-ray emission of the
binary system PSR B1259-63/SS 2883 of a radio pulsar orbiting a massive,
luminous Be star in a highly eccentric orbit. The observations around the 2004
periastron passage of the pulsar were performed with the four 13 m Cherenkov
telescopes of the H.E.S.S. experiment, recently installed in Namibia and in
full operation since December 2003. Between February and June 2004, a gamma-ray
signal from the binary system was detected with a total significance above 13
sigma. The flux was found to vary significantly on timescales of days which
makes PSR B1259-63 the first variable galactic source of VHE gamma-rays
observed so far. Strong emission signals were observed in pre- and
post-periastron phases with a flux minimum around periastron, followed by a
gradual flux decrease in the months after. The measured time-averaged energy
spectrum above a mean threshold energy of 380 GeV can be fitted by a simple
power law F_0(E/1 TeV)^-Gamma with a photon index Gamma =
2.7+-0.2_stat+-0.2_sys and flux normalisation F_0 = (1.3+-0.1_stat+-0.3_sys)
10^-12 TeV^-1 cm^-2 s^-1. This detection of VHE gamma-rays provides unambiguous
evidence for particle acceleration to multi-TeV energies in the binary system.
In combination with coeval observations of the X-ray synchrotron emission by
the RXTE and INTEGRAL instruments, and assuming the VHE gamma-ray emission to
be produced by the inverse Compton mechanism, the magnetic field strength can
be directly estimated to be of the order of 1 G.Comment: 10 pages, 8 figures, accepted in Astronomy and Astrophysics on 2 June
2005, replace: document unchanged, replaced author field in astro-ph entry -
authors are all members of the H.E.S.S. collaboration and three additional
authors (99+3, see document
Low Complexity Regularization of Linear Inverse Problems
Inverse problems and regularization theory is a central theme in contemporary
signal processing, where the goal is to reconstruct an unknown signal from
partial indirect, and possibly noisy, measurements of it. A now standard method
for recovering the unknown signal is to solve a convex optimization problem
that enforces some prior knowledge about its structure. This has proved
efficient in many problems routinely encountered in imaging sciences,
statistics and machine learning. This chapter delivers a review of recent
advances in the field where the regularization prior promotes solutions
conforming to some notion of simplicity/low-complexity. These priors encompass
as popular examples sparsity and group sparsity (to capture the compressibility
of natural signals and images), total variation and analysis sparsity (to
promote piecewise regularity), and low-rank (as natural extension of sparsity
to matrix-valued data). Our aim is to provide a unified treatment of all these
regularizations under a single umbrella, namely the theory of partial
smoothness. This framework is very general and accommodates all low-complexity
regularizers just mentioned, as well as many others. Partial smoothness turns
out to be the canonical way to encode low-dimensional models that can be linear
spaces or more general smooth manifolds. This review is intended to serve as a
one stop shop toward the understanding of the theoretical properties of the
so-regularized solutions. It covers a large spectrum including: (i) recovery
guarantees and stability to noise, both in terms of -stability and
model (manifold) identification; (ii) sensitivity analysis to perturbations of
the parameters involved (in particular the observations), with applications to
unbiased risk estimation ; (iii) convergence properties of the forward-backward
proximal splitting scheme, that is particularly well suited to solve the
corresponding large-scale regularized optimization problem
Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at TeV
The elliptic, , triangular, , and quadrangular, , azimuthal
anisotropic flow coefficients are measured for unidentified charged particles,
pions and (anti-)protons in Pb-Pb collisions at TeV
with the ALICE detector at the Large Hadron Collider. Results obtained with the
event plane and four-particle cumulant methods are reported for the
pseudo-rapidity range at different collision centralities and as a
function of transverse momentum, , out to GeV/.
The observed non-zero elliptic and triangular flow depends only weakly on
transverse momentum for GeV/. The small dependence
of the difference between elliptic flow results obtained from the event plane
and four-particle cumulant methods suggests a common origin of flow
fluctuations up to GeV/. The magnitude of the (anti-)proton
elliptic and triangular flow is larger than that of pions out to at least
GeV/ indicating that the particle type dependence persists out
to high .Comment: 16 pages, 5 captioned figures, authors from page 11, published
version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
- …