27 research outputs found

    Understanding heterogeneity in Genesis diamond-like carbon film using SIMS analysis of implants

    Get PDF
    An amorphous diamond-like carbon film deposited on silicon made at Sandia National Laboratory by pulsed laser deposition was one of several solar wind (SW) collectors used by the Genesis Mission (NASA Discovery Class Mission #5). The film was ~1 μm thick, amorphous, anhydrous, and had a high ratio of sp^3–sp^2 bonds (>50%). For 27 months of exposure to space at the first Lagrange point, the collectors were passively irradiated with SW (H fluence ~2 × 10^(16) ions cm^(−2); He fluence ~8 × 10^(14) ions cm^(−2)). The radiation damage caused by the implanted H ions peaked at 12–14 nm below the surface of the film and that of He about 20–23 nm. To enable quantitative measurement of the SW fluences by secondary ion mass spectroscopy, minor isotopes of Mg (^(25)Mg and ^(26)Mg) were commercially implanted into flight-spare collectors at 75 keV and a fluence of 1 × 10^(14) ions cm^(−2). The shapes of analytical depth profiles, the rate at which the profiles were sputtered by a given beam current, and the intensity of ion yields are used to characterize the structure of the material in small areas (~200 × 200 ± 50 μm). Data were consistent with the hypothesis that minor structural changes in the film were induced by SW exposure

    Creative destruction in science

    Get PDF
    Drawing on the concept of a gale of creative destruction in a capitalistic economy, we argue that initiatives to assess the robustness of findings in the organizational literature should aim to simultaneously test competing ideas operating in the same theoretical space. In other words, replication efforts should seek not just to support or question the original findings, but also to replace them with revised, stronger theories with greater explanatory power. Achieving this will typically require adding new measures, conditions, and subject populations to research designs, in order to carry out conceptual tests of multiple theories in addition to directly replicating the original findings. To illustrate the value of the creative destruction approach for theory pruning in organizational scholarship, we describe recent replication initiatives re-examining culture and work morality, working parents\u2019 reasoning about day care options, and gender discrimination in hiring decisions. Significance statement It is becoming increasingly clear that many, if not most, published research findings across scientific fields are not readily replicable when the same method is repeated. Although extremely valuable, failed replications risk leaving a theoretical void\u2014 reducing confidence the original theoretical prediction is true, but not replacing it with positive evidence in favor of an alternative theory. We introduce the creative destruction approach to replication, which combines theory pruning methods from the field of management with emerging best practices from the open science movement, with the aim of making replications as generative as possible. In effect, we advocate for a Replication 2.0 movement in which the goal shifts from checking on the reliability of past findings to actively engaging in competitive theory testing and theory building. Scientific transparency statement The materials, code, and data for this article are posted publicly on the Open Science Framework, with links provided in the article

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Noble gas composition of the solar wind as collected by the Genesis mission

    No full text
    We present the elemental and isotopic composition of noble gases in the bulk solar wind collected by the NASA Genesis sample return mission. He, Ne, and Ar were analyzed in diamond-like carbon on a silicon substrate (DOS) and ^(84),^(86)Kr and ^(129),^(132)Xe in silicon targets by UV laser ablation noble gas mass spectrometry. Solar wind noble gases are quantitatively retained in DOS and with exception of He also in Si as shown by a stepwise heating experiment on a flown DOS target and analyses on other bulk solar wind collector materials. Solar wind data presented here are absolutely calibrated and the error of the standard gas composition is included in stated uncertainties. The isotopic composition of the light noble gases in the bulk solar wind is as follows: ^3He/^4He: (4.64 ± 0.09) × 10^(−4), ^(20)Ne/^(22)Ne: 13.78 ± 0.03, ^(21)Ne/^(22)Ne: 0.0329 ± 0.0001, ^(36)Ar/^(38)Ar 5.47 ± 0.01. The elemental composition is:^4He/^(20)Ne: 656 ± 5, and ^(20)Ne/^(36)Ar 42.1 ± 0.3. Genesis provided the first Kr and Xe data on the contemporary bulk solar wind. The preliminary isotope and elemental composition is: ^(86)Kr/^(84)Kr: 0.302 ± 0.003, ^(129)Xe/^(132)Xe: 1.05 ± 0.02, ^(36)Ar/^(84)Kr 2390 ± 150, and ^(84)Kr/^(132)Xe 9.5 ± 1.0. The ^3He/^4He and the ^4He/^(20)Ne ratios in the Genesis DOS target are the highest solar wind values measured in exposed natural and artificial targets. The isotopic composition of the other noble gases and the Kr/Xe ratio obtained in this work agree with data from lunar samples containing “young” (~100 Ma) solar wind, indicating that solar wind composition has not changed within at least the last 100 Ma. Genesis could provide in many cases more precise data on solar wind composition than any previous experiment. Because of the controlled exposure conditions, Genesis data are also less prone to unrecognized systematic errors than, e.g., lunar sample analyses. The solar wind is the most authentic sample of the solar composition of noble gases, however, the derivation of solar noble gas abundances and isotopic composition using solar wind data requires a better understanding of fractionation processes acting upon solar wind formation

    Growth of crustose lichens : a review

    Get PDF
    Crustose species are the slowest growing of all lichens. Their slow growth and longevity, especially of the yellow-green Rhizocarpon group, has made them important for surface-exposure dating (lichenometry). This review considers various aspects of the growth of crustose lichens revealed by direct measurement including: 1) early growth and development; 2) radial growth rates (RGR, mm yr−1); 3) the growth rate–size curve; and 4) the influence of environmental factors. Many crustose species comprise discrete areolae that contain the algal partner growing on the surface of a non-lichenized fungal hypothallus. Recent data suggest that 'primary' areolae may develop from free-living algal cells on the substratum while 'secondary' areolae develop from zoospores produced within the thallus. In more extreme environments, the RGR of crustose species may be exceptionally slow but considerably faster rates of growth have been recorded under more favourable conditions. The growth curves of crustose lichens with a marginal hypothallus may differ from the 'asymptotic' type of curve recorded in foliose and placodioid species; the latter are characterized by a phase of increasing RGR to a maximum and may be followed by a phase of decreasing growth. The decline in RGR in larger thalli may be attributable to a reduction in the efficiency of translocation of carbohydrate to the thallus margin or to an increased allocation of carbon to support mature 'reproductive' areolae. Crustose species have a low RGR accompanied by a low demand for nutrients and an increased allocation of carbon for stress resistance; therefore enabling colonization of more extreme environments
    corecore