64 research outputs found
Ten Years After Mass Treatment with Two Doses of Azithromycin for Trachoma Elimination in Rombo District – Kilimanjaro: Is Trachoma Still Eliminated? A Case Study of Kahe Mpya Sub-Village
Purpose: This study aimed at evaluating the long term impact of mass distribution of azithromycin in a community which had high prevalence of trachoma and documenting the current prevalence of trachoma. Material and Methods: All residents of Kahe Mpya were given chance to participate in this study, in turn 575 residents participated. The conjunctiva of each consenting resident was examined for clinical signs of trachoma using WHO trachoma grading scheme. Results: The overall prevalence of active trachoma was 4.7% versus 8.1% found 10 years back after the second dose of azithromycin and 3.4% during the elimination period in 2005. In children < 10 years of age the prevalence of active trachoma was 3.3% versus 16.3% found after the second dose of azithromycin and 2.6% during elimination. Children < 10 years of age carry the majority (70%) of the active disease. TS, TT and CO were 109(19%) cases, 7(1.2%) cases and 2(0.3%) cases respectively, and almost all of these cases were in the age group older than 30 years. Conclusion: The prevalence of trachoma fell dramatically during the interventions period and continued to be low ten years after mass azithromycin distribution. Trachoma is still eliminated in this community. Complications of trachoma (TT and TS) still continue to develop. 
Artificial intelligence-supported diabetic retinopathy screening in Tanzania: rationale and design of a randomised controlled trial
INTRODUCTION: Globally, diabetic retinopathy (DR) is a major cause of blindness. Sub-Saharan Africa is projected to see the largest proportionate increase in the number of people living with diabetes over the next two decades. Screening for DR is recommended to prevent sight loss; however, in many low and middle-income countries, because of a lack of specialist eye care staff, current screening services for DR are not optimal. The use of artificial intelligence (AI) for DR screening, which automates the grading of retinal photographs and provides a point-of-screening result, offers an innovative potential solution to improve DR screening in Tanzania. METHODS AND ANALYSIS: We will test the hypothesis that AI-supported DR screening increases the proportion of persons with true referable DR who attend the central ophthalmology clinic following referral after screening in a single-masked, parallel group, individually randomised controlled trial. Participants (2364) will be randomised (1:1 ratio) to either AI-supported or the standard of care DR screening pathway. Participants allocated to the AI-supported screening pathway will receive their result followed by point-of-screening counselling immediately after retinal image capture. Participants in the standard of care arm will receive their result and counselling by phone once the retinal images have been graded in the usual way (typically after 2-4 weeks). The primary outcome is the proportion of persons with true referable DR attending the central ophthalmology clinic within 8 weeks of screening. Secondary outcomes, by trial arm, include the proportion of persons attending the central ophthalmology clinic out of all those referred, sensitivity and specificity, number of false positive referrals, acceptability and fidelity of AI-supported screening. ETHICS AND DISSEMINATION: The London School of Hygiene & Tropical Medicine, Kilimanjaro Christian Medical Centre and Tanzanian National Institute of Medical Research ethics committees have approved the trial. The results will be submitted to peer-reviewed journals for publication. TRIAL REGISTRATION NUMBER: ISRCTN18317152
Treatment delays in children and young adults with lymphoma: report from an East Africa Lymphoma Cohort Study
Background: Affordable treatments for lymphoma from the WHO's essential medicine list are available in low-income settings. However, precise diagnosis is often lacking and prolonged time to diagnosis and treatment results in poor treatment outcomes. So far, a detailed analysis of the root causes of
the treatment delay is lacking.
Methods: This prospective cohort study was conducted at three tertiary cancer hospitals in Tanzania and one cancer centre, St. Mary's Hospital-Lacor Hospital, in Northern Uganda. The study included patients with a confirmed diagnosis of lymphoma. The primary outcome was the median total treatment delay and its components. Total treatment delay was defined as the time taken from the onset of symptoms to receiving definitive cancer treatment.
Results: The median age of patients was 12 years (IQR 9-18), and 100 (68%) were males. The median Total Treatment Delay for the entire cohort was 124 days (95% CI 107 - 136). Not started treatment probability for the entire cohort was 64% (95% CI 56-72) at 90 days and 30% (24 - 39) at 180 days. The median Total Treatment Delay for Burkitt lymphoma was 91 days (95% CI 80 - 115), while for DLBCL and Hodgkin lymphoma, it was 114 days (95% CI 84 - 148) and 232 days (95% CI 179 - 305), respectively. Conclusion: Significant treatment delay for lymphoma patients emanates from healthcare system-related factors. Due to delays in referrals from primary care and lack of capacity of pathology in secondary care, initial treatment decisions are still often based on clinical suspicion and urgency
Dyclonine rescues frataxin deficiency in animal models and buccal cells of patients with Friedreich's ataxia.
Inherited deficiency in the mitochondrial protein frataxin (FXN) causes the rare disease Friedreich's ataxia (FA), for which there is no successful treatment. We identified a redox deficiency in FA cells and used this to model the disease. We screened a 1600-compound library to identify existing drugs, which could be of therapeutic benefit. We identified the topical anesthetic dyclonine as protective. Dyclonine increased FXN transcript and FXN protein dose-dependently in FA cells and brains of animal models. Dyclonine also rescued FXN-dependent enzyme deficiencies in the iron-sulfur enzymes, aconitase and succinate dehydrogenase. Dyclonine induces the Nrf2 [nuclear factor (erythroid-derived 2)-like 2] transcription factor, which we show binds an upstream response element in the FXN locus. Additionally, dyclonine also inhibited the activity of histone methyltransferase G9a, known to methylate histone H3K9 to silence FA chromatin. Chronic dosing in a FA mouse model prevented a performance decline in balance beam studies. A human clinical proof-of-concept study was completed in eight FA patients dosed twice daily using a 1% dyclonine rinse for 1 week. Six of the eight patients showed an increase in buccal cell FXN levels, and fold induction was significantly correlated with disease severity. Dyclonine represents a novel therapeutic strategy that can potentially be repurposed for the treatment of FA
Semen amyloids participate in spermatozoa selection and clearance
Unlike other human biological fluids, semen contains multiple types of amyloid fibrils in the absence of disease. These fibrils enhance HIV infection by promoting viral fusion to cellular targets, but their natural function remained unknown. The similarities shared between HIV fusion to host cell and sperm fusion to oocyte led us to examine whether these fibrils promote fertilization. Surprisingly, the fibrils inhibited fertilization by immobilizing sperm. Interestingly, however, this immobilization facilitated uptake and clearance of sperm by macrophages, which are known to infiltrate the female reproductive tract (FRT) following semen exposure. In the presence of semen fibrils, damaged and apoptotic sperm were more rapidly phagocytosed than healthy ones, suggesting that deposition of semen fibrils in the lower FRT facilitates clearance of poor-quality sperm. Our findings suggest that amyloid fibrils in semen may play a role in reproduction by participating in sperm selection and facilitating the rapid removal of sperm antigens
Identification of Five Developmental Processes during Chondrogenic Differentiation of Embryonic Stem Cells
Chondrogenesis is the complex process that leads to the establishment of cartilage and bone formation. Due to their ability to differentiate in vitro and mimic development, embryonic stem cells (ESCs) show great potential for investigating developmental processes. In this study, we used chondrogenic differentiation of ESCs as a model to analyze morphogenetic events during chondrogenesis.ESCs were differentiated into the chondrocyte lineage, forming small cartilaginous aggregates in suspension. Differentiated ESCs showed that chondrogenesis was typically characterized by five overlapping stages. During the first stage, cell condensation and aggregate formation was observed. The second stage was characterized by differentiation into chondrocytes and fibril scaffold formation within spherical aggregates. Deposition of cartilaginous extracellular matrix and cartilage formation were hallmarks of the third stage. Apoptosis of chondrocytes, hypertrophy and/or degradation of cartilage occurred during the fourth stage. Finally, during the fifth stage, bone replacement with membranous calcified tissues took place.We demonstrate that ESCs show the chondrogenic differentiation pathway from the pluripotent stem cell to terminal skeletogenesis through these five stages in vitro. During each stage, morphological changes acquired in preceding stages played an important role in further development as a scaffold or template in subsequent stages. The study of chondrogenesis via ESC differentiation may be informative to our further understanding of skeletal growth and regeneration
The ocean sampling day consortium
Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits
Artificial intelligence-supported diabetic retinopathy screening in Tanzania: rationale and design of a randomised controlled trial.
Globally, diabetic retinopathy (DR) is a major cause of blindness. Sub-Saharan Africa is projected to see the largest proportionate increase in the number of people living with diabetes over the next two decades. Screening for DR is recommended to prevent sight loss; however, in many low and middle-income countries, because of a lack of specialist eye care staff, current screening services for DR are not optimal. The use of artificial intelligence (AI) for DR screening, which automates the grading of retinal photographs and provides a point-of-screening result, offers an innovative potential solution to improve DR screening in Tanzania. We will test the hypothesis that AI-supported DR screening increases the proportion of persons with true referable DR who attend the central ophthalmology clinic following referral after screening in a single-masked, parallel group, individually randomised controlled trial. Participants (2364) will be randomised (1:1 ratio) to either AI-supported or the standard of care DR screening pathway. Participants allocated to the AI-supported screening pathway will receive their result followed by point-of-screening counselling immediately after retinal image capture. Participants in the standard of care arm will receive their result and counselling by phone once the retinal images have been graded in the usual way (typically after 2-4 weeks). The primary outcome is the proportion of persons with true referable DR attending the central ophthalmology clinic within 8 weeks of screening. Secondary outcomes, by trial arm, include the proportion of persons attending the central ophthalmology clinic out of all those referred, sensitivity and specificity, number of false positive referrals, acceptability and fidelity of AI-supported screening. The London School of Hygiene & Tropical Medicine, Kilimanjaro Christian Medical Centre and Tanzanian National Institute of Medical Research ethics committees have approved the trial. The results will be submitted to peer-reviewed journals for publication
Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans
Substantial evidence implicates the nucleus accumbens in motivated performance, but very little is known about the neurochemical underpinnings of individual differences in motivation. Here, we applied 1H magnetic resonance spectroscopy (1H-MRS) at ultra-high-field in the nucleus accumbens and inquired whether levels of glutamate (Glu), glutamine (Gln), GABA or their ratios predict interindividual differences in effort-based motivated task performance. Given the incentive value of social competition, we also examined differences in performance under self-motivated or competition settings. Our results indicate that higher accumbal Gln-to-Glu ratio predicts better overall performance and reduced effort perception. As performance is the outcome of multiple cognitive, motor and physiological processes, we applied computational modeling to estimate best-fitting individual parameters related to specific processes modeled with utility, effort and performance functions. This model-based analysis revealed that accumbal Gln-to-Glu ratio specifically relates to stamina; i.e., the capacity to maintain performance over long periods. It also indicated that competition boosts performance from task onset, particularly for low Gln-to-Glu individuals. In conclusion, our findings provide novel insights implicating accumbal Gln and Glu balance on the prediction of specific computational components of motivated performance. This approach and findings can help developing therapeutic strategies based on targeting metabolism to ameliorate deficits in effort engagement
The Ocean Sampling Day Consortium
Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits
- …