3,061 research outputs found
SDSS J092455.87+021924.9: an Interesting Gravitationally Lensed Quasar from the Sloan Digital Sky Survey
We report the discovery of a new gravitationally lensed quasar from the Sloan
Digital Sky Survey, SDSS J092455.87+021924.9 (SDSS J0924+0219). This object was
selected from among known SDSS quasars by an algorithm that was designed to
select another known SDSS lensed quasar (SDSS 1226-0006A,B). Five separate
components, three of which are unresolved, are identified in photometric
follow-up observations obtained with the Magellan Consortium's 6.5m Walter
Baade telescope at Las Campanas Observatory. Two of the unresolved components
(designated A and B) are confirmed to be quasars with z=1.524; the velocity
difference is less than 100 km sec^{-1} according to spectra taken with the W.
M. Keck Observatory's Keck II telescope on Mauna Kea. A third stellar
component, designated C, has the colors of a quasar with redshift similar to
components A and B. The maximum separation of the point sources is 1.78". The
other two sources, designated G and D, are resolved. Component G appears to be
the best candidate for the lensing galaxy. Although component D is near the
expected position of the fourth lensed component in a four image lens system,
its properties are not consistent with being the image of a quasar at z~1.5.
Nevertheless, the identical redshifts of components A and B and the presence of
component C strongly suggest that this object is a gravitational lens. Our
observations support the idea that a foreground object reddens the fourth
lensed component and that another unmodeled effect (such as micro- or
milli-lensing) demagnificates it, but we cannot rule out the possibility that
SDSS0924+0219 is an example of the relatively rare class of ``three component''
lens systems.Comment: 24 pages, 6 figures, accepted by A
Packed Ultra-wideband Mapping Array (PUMA): A Radio Telescope for Cosmology and Transients
PUMA is a proposal for an ultra-wideband, low-resolution and transit
interferometric radio telescope operating at . Its
design is driven by six science goals which span three science themes: the
physics of dark energy (measuring the expansion history and growth of the
universe up to ), the physics of inflation (constraining primordial
non-Gaussianity and primordial features) and the transient radio sky (detecting
one million fast radio bursts and following up SKA-discovered pulsars). We
propose two array configurations composed of hexagonally close-packed 6m dish
arrangements with 50% fill factor. The initial 5,000 element 'petite array' is
scientifically compelling, and can act as a demonstrator and a stepping stone
to the full 32,000 element 'full array'. Viewed as a 21cm intensity mapping
telescope, the program has the noise equivalent of a traditional spectroscopic
galaxy survey comprised of 0.6 and 2.5 billion galaxies at a comoving
wavenumber of spanning the redshift range for the petite and full configurations, respectively. At redshifts beyond
, the 21cm technique is a uniquely powerful way of mapping the universe,
while the low-redshift range will allow for numerous cross-correlations with
existing and upcoming surveys. This program is enabled by the development of
ultra-wideband radio feeds, cost-effective dish construction methods, commodity
radio-frequency electronics driven by the telecommunication industry and the
emergence of sufficient computing power to facilitate real-time signal
processing that exploits the full potential of massive radio arrays. The
project has an estimated construction cost of 55 and 330 million FY19 USD for
the petite and full array configurations. Including R&D, design, operations and
science analysis, the cost rises to 125 and 600 million FY19 USD, respectively.Comment: 10 pages + references, 3 figures, 3 tables; project white paper
submitted to the Astro2020 decadal survey; further details in updated
arXiv:1810.0957
Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci
SDSS J0246-0825: A New Gravitationally Lensed Quasar from the Sloan Digital Sky Survey
We report the discovery of a new two-image gravitationally lensed quasar,
SDSS J024634.11-082536.2 (SDSS J0246-0825). This object was selected as a
lensed quasar candidate from the Sloan Digital Sky Survey (SDSS) by the same
algorithm that was used to discover other SDSS lensed quasars (e.g., SDSS
J0924+0219). Multicolor imaging with the Magellan Consortium's Walter Baade
6.5-m telescope and the spectroscopic observations using the W. M. Keck
Observatory's Keck II telescope confirm that SDSS J0246-0825 consists of two
lensed images (1\farcs04) of a source quasar at z=1.68.
Imaging observations with the Keck telescope and the Hubble Space Telescope
reveal an extended object between the two quasar components, which is likely to
be a lensing galaxy of this system. From the absorption lines in the spectra of
quasar components and the apparent magnitude of the galaxy, combined with the
expected absolute magnitude from the Faber-Jackson relation, we estimate the
redshift of the lensing galaxy to be z=0.724. A highly distorted ring is
visible in the Hubble Space Telescope images, which is likely to be the lensed
host galaxy of the source quasar. Simple mass modeling predicts the possibility
that there is a small (faint) lensing object near the primary lensing galaxy.Comment: 30 pages, 12 figures, The Astronomical Journal accepte
LSST Science Book, Version 2.0
A survey that can cover the sky in optical bands over wide fields to faint
magnitudes with a fast cadence will enable many of the exciting science
opportunities of the next decade. The Large Synoptic Survey Telescope (LSST)
will have an effective aperture of 6.7 meters and an imaging camera with field
of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over
20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with
fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a
total point-source depth of r~27.5. The LSST Science Book describes the basic
parameters of the LSST hardware, software, and observing plans. The book
discusses educational and outreach opportunities, then goes on to describe a
broad range of science that LSST will revolutionize: mapping the inner and
outer Solar System, stellar populations in the Milky Way and nearby galaxies,
the structure of the Milky Way disk and halo and other objects in the Local
Volume, transient and variable objects both at low and high redshift, and the
properties of normal and active galaxies at low and high redshift. It then
turns to far-field cosmological topics, exploring properties of supernovae to
z~1, strong and weak lensing, the large-scale distribution of galaxies and
baryon oscillations, and how these different probes may be combined to
constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at
http://www.lsst.org/lsst/sciboo
LSST: from Science Drivers to Reference Design and Anticipated Data Products
(Abridged) We describe here the most ambitious survey currently planned in
the optical, the Large Synoptic Survey Telescope (LSST). A vast array of
science will be enabled by a single wide-deep-fast sky survey, and LSST will
have unique survey capability in the faint time domain. The LSST design is
driven by four main science themes: probing dark energy and dark matter, taking
an inventory of the Solar System, exploring the transient optical sky, and
mapping the Milky Way. LSST will be a wide-field ground-based system sited at
Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m
effective) primary mirror, a 9.6 deg field of view, and a 3.2 Gigapixel
camera. The standard observing sequence will consist of pairs of 15-second
exposures in a given field, with two such visits in each pointing in a given
night. With these repeats, the LSST system is capable of imaging about 10,000
square degrees of sky in a single filter in three nights. The typical 5
point-source depth in a single visit in will be (AB). The
project is in the construction phase and will begin regular survey operations
by 2022. The survey area will be contained within 30,000 deg with
, and will be imaged multiple times in six bands, ,
covering the wavelength range 320--1050 nm. About 90\% of the observing time
will be devoted to a deep-wide-fast survey mode which will uniformly observe a
18,000 deg region about 800 times (summed over all six bands) during the
anticipated 10 years of operations, and yield a coadded map to . The
remaining 10\% of the observing time will be allocated to projects such as a
Very Deep and Fast time domain survey. The goal is to make LSST data products,
including a relational database of about 32 trillion observations of 40 billion
objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures
available from https://www.lsst.org/overvie
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
The Seventh Data Release of the Sloan Digital Sky Survey
This paper describes the Seventh Data Release of the Sloan Digital Sky Survey
(SDSS), marking the completion of the original goals of the SDSS and the end of
the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most
of the roughly 2000 deg^2 increment over the previous data release lying in
regions of low Galactic latitude. The catalog contains five-band photometry for
357 million distinct objects. The survey also includes repeat photometry over
250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A
coaddition of these data goes roughly two magnitudes fainter than the main
survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2
in the Northern Galactic Cap, closing the gap that was present in previous data
releases. There are over 1.6 million spectra in total, including 930,000
galaxies, 120,000 quasars, and 460,000 stars. The data release includes
improved stellar photometry at low Galactic latitude. The astrometry has all
been recalibrated with the second version of the USNO CCD Astrograph Catalog
(UCAC-2), reducing the rms statistical errors at the bright end to 45
milli-arcseconds per coordinate. A systematic error in bright galaxy photometr
is less severe than previously reported for the majority of galaxies. Finally,
we describe a series of improvements to the spectroscopic reductions, including
better flat-fielding and improved wavelength calibration at the blue end,
better processing of objects with extremely strong narrow emission lines, and
an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor
correction
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
- …