99 research outputs found

    On the Continuous Formation of Field Spheroidal Galaxies in Hierarchical Models of Structure Formation

    Get PDF
    We re-examine the assembly history of field spheroidals as a potentially powerful discriminant of galaxy formation models. Whereas monolithic collapse and hierarchical, merger-driven, models suggest radically different histories for these galaxies, neither the theoretical predictions nor the observational data for field galaxies have been sufficiently reliable for precise conclusions to be drawn. A major difficulty in interpreting the observations, reviewed here, concerns the taxonomic definition of spheroidals in merger-based models. Using quantitative measures of recent star formation activity drawn from the internal properties of a sample of distant field galaxies in the Hubble Deep Fields, we undertake a new analysis to assess the continuous formation of spheroidal galaxies. Whereas abundances and redshift distributions of modelled spheroidals are fairly insensitive to their formation path, we demonstrate that the distribution and amount of blue light arising from recent mergers provides a more sensitive approach. With the limited resolved data currently available, the rate of mass assembly implied by the observed colour inhomogeneities is compared to that expected in popular Lambda-dominated cold dark matter models of structure formation. These models produce as many highly inhomogeneous spheroidals as observed, but underpredict the proportion of homogeneous, passive objects. We conclude that colour inhomogeneities, particularly when combined with spectroscopic diagnostics for large, representative samples of field spheroidals, will be a more valuable test of their physical assembly history than basic source counts and redshift distributions. Securing such data should be a high priority for the Advanced Camera for Surveys on Hubble Space Telescope.Comment: 14 pages, 7 figures, submitted to MNRA

    Unveiling the oldest and most massive galaxies at very high redshift

    Get PDF
    (Abridged) This work explores the existence of high redshift massive galaxies unveiled with Spitzer+IRAC, but missed by conventional selection techniques based on optical and near-infrared observations. To this end, we use the multi-wavelength imaging data available for the GOODS-South field, and select a flux-limited sample from the IRAC 3.6um image to m(AB)<23.26. We confine our study to the galaxies undetected by the optical HST+ACS imaging and close to the detection limit of the K-band image (K>23.5 AB). Our selection unveiled 20 galaxies on which we performed a detailed photometric analysis. For each galaxy, we built an SED based on optical-to-8um photometry to estimate the photo-z and to derive the main galaxies physical properties. The majority of the sample sources show degenerate/bimodal solutions for the photometric redshifts (Abridged). These can either be heavily dust-enshrouded (Av~2-4) starbursts at 210^12 Lsun, or massive post-starburst galaxies in the redshift interval 4<z<9 with stellar masses of 10^11 Msun. One galaxy, the only source in our sample with both an X-ray and a 24um detection, might be an extremely massive object at z~8 detected during a post-starburst phase with concomitant QSO activity (although a lower-z solution is not excluded). Our investigation of Spitzer-selected galaxies with very red SEDs and completely undetected in the optical reveals a potential population of massive galaxies at z>4 which appear to include significant AGN emissions. These sources may be the oldest stellar systems at z~4. These, previously unrecognized, optically obscured objects might provide an important contribution to the massive-end (M>10^11 sun) of the high-z stellar mass function and they would almost double it (Abridged).Comment: Accepted for publication in Astronomy and Astrophysic

    Cosmic Star Formation: Constraints on the Galaxy Formation Models

    Full text link
    We study the evolution of the cosmic star formation by computing the luminosity density (LD) in the UV, B, J, and K bands, and the stellar mass density (MD) of galaxies in two reference models of galaxy evolution: the pure luminosity evolution (PLE) model developed by Calura & Matteucci (2003) and the semi-analytical model (SAM) of hierarchical galaxy formation by Menci et al. (2002). The former includes a detailed description of the chemical evolution of galaxies of different morphological types with no density evolution; the latter includes the merging histories of the galactic DM haloes, as predicted by the hierarchical clustering scenario, but it does not contain morphological classification nor chemical evolution. We find that at z< 1.5 both models are consistent with the available data on the LD of galaxies in all the considered bands. At high z, the LDs predicted in the PLE model show a peak due to the formation of ellipticals, whereas the SAM predicts a gradual decrease of the star formation and of the LD for z> 2.5. At such redshifts the PLE predictions tend to overestimate the present data in the B band whereas the SAM tends to underestimate the observed UV LD. As for the stellar MD, the PLE picture predicts that nearly 50% and 85% of the present stellar mass are in place at z=4 and z=1, respectively. According to the SAM, 50% and 60% of the present stellar mass are in place at z=1.2 and z=1, respectively. Both predictions fit the observed MD up to z=1. At z>1, the PLE model and the SAM tend to overestimate and underestimate the observed values, respectively. We discuss the origin of the above model results, and the role of observational uncertainties (such as dust extinction) in comparing models with observations.Comment: 14 pages, accepted for publication in MNRA

    Automated Morphological Classification of SDSS Red Sequence Galaxies

    Full text link
    (abridged) In the last decade, the advent of enormous galaxy surveys has motivated the development of automated morphological classification schemes to deal with large data volumes. Existing automated schemes can successfully distinguish between early and late type galaxies and identify merger candidates, but are inadequate for studying detailed morphologies of red sequence galaxies. To fill this need, we present a new automated classification scheme that focuses on making finer distinctions between early types roughly corresponding to Hubble types E, S0, and Sa. We visually classify a sample of 984 non-starforming SDSS galaxies with apparent sizes >14". We then develop an automated method to closely reproduce the visual classifications, which both provides a check on the visual results and makes it possible to extend morphological analysis to much larger samples. We visually classify the galaxies into three bulge classes (BC) by the shape of the light profile in the outer regions: discs have sharp edges and bulges do not, while some galaxies are intermediate. We separately identify galaxies with features: spiral arms, bars, clumps, rings, and dust. We find general agreement between BC and the bulge fraction B/T measured by the galaxy modeling package GIM2D, but many visual discs have B/T>0.5. Three additional automated parameters -- smoothness, axis ratio, and concentration -- can identify many of these high-B/T discs to yield automated classifications that agree ~70% with the visual classifications (>90% within one BC). Both methods are used to study the bulge vs. disc frequency as a function of four measures of galaxy 'size': luminosity, stellar mass, velocity dispersion, and radius. All size indicators show a fall in disc fraction and a rise in bulge fraction among larger galaxies.Comment: 24 pages, 20 figures, MNRAS accepte

    Caecal metastasis from breast cancer presenting as intestinal obstruction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastrointestinal metastsasis from the breast cancer are rare. We report a patient who presented with intestinal obstruction due to solitary caecal metastasis from infiltrating ductal carcinoma of breast. We also review the available literature briefly.</p> <p>Case presentation</p> <p>A 72 year old lady with past history of breast cancer presented with intestinal obstruction due to a caecal mass. She underwent an emergency right hemicolectomy. The histological examination of the right hemicolectomy specimen revealed an adenocarcinoma in caecum staining positive for Cytokeratin 7 and Carcinoembryonic antigen and negative for Cytokeratin 20, CDX2 and Estrogen receptor. Eight out of 11 mesenteric nodes showed tumour deposits. A histological diagnosis of metastatic breast carcinoma was given.</p> <p>Conclusion</p> <p>To the best of our knowledge, this is the first case report of solitary metastasis to caecum from infiltrating ductal carcinoma of breast. Awareness of this possibility will aid in appropriate management of such patients.</p

    On the buildup of massive early-type galaxies at z<~1. I- Reconciling their hierarchical assembly with mass-downsizing

    Get PDF
    Several studies have tried to ascertain whether or not the increase in abundance of the early-type galaxies (E-S0a's) with time is mainly due to major mergers, reaching opposite conclusions. We have tested it directly through semi-analytical modelling, by studying how the massive early-type galaxies with log(M_*/Msun)>11 at z~0 (mETGs) would have evolved backwards-in-time, under the hypothesis that each major merger gives place to an early-type galaxy. The study was carried out just considering the major mergers strictly reported by observations at each redshift, and assuming that gas-rich major mergers experience transitory phases of dust-reddened, star-forming galaxies (DSFs). The model is able to reproduce the observed evolution of the galaxy LFs at z<~1, simultaneously for different rest-frame bands (B, I, and K) and for different selection criteria on color and morphology. It also provides a framework in which apparently-contradictory results on the recent evolution of the luminosity function (LF) of massive, red galaxies can be reconciled, just considering that observational samples of red galaxies can be significantly contaminated by DSFs. The model proves that it is feasible to build up ~50-60% of the present-day mETG population at z<~1 and to reproduce the observational excess by a factor of ~4-5 of late-type galaxies at 0.8<z<1 through the coordinated action of wet, mixed, and dry major mergers, fulfilling global trends that are in general agreement with mass-downsizing. The bulk of this assembly takes place during ~1 Gyr elapsed at 0.8<z<1. The model suggests that major mergers have been the main driver for the observational migration of mass from the massive-end of the blue galaxy cloud to that of the red sequence in the last ~8 Gyr.(Abridged)Comment: Accepted for publication in Astronomy & Astrophysics; 21 pages, 8 figures. Minor corrections included, shortened title. Results and conclusions unchange

    The properties of field elliptical galaxies at intermediate redshift. III: the Fundamental Plane and the evolution of stellar populations from z~0.4 to z=0

    Get PDF
    We report on the study of a sample of 25 field early-type galaxies, in the redshift range z~0.1-0.5, selected on the basis of colours and morphology from the HST-MDS. Field early-type galaxies define a tight Fundamental Plane (FP) out to z~0.4, with scatter unchanged with respect to local samples, within the observational errors. The intermediate redshift FP is offset with respect to the FP of the Coma Cluster. The offset of the FP is found to increase with redshift. The evolution of the FP is studied quantitatively with a Bayesian-Montecarlo technique. By applying this technique, we find that the offset of the intercept of the FP (\Delta \gamma) with respect to the local FP increases as \Delta \gamma = \tau z with the following 68 per cent limits: 0.33<\tau<0.44 (for \Omega=1, \Omega_{\Lambda}=0) or 0.44<\tau<0.56 (for \Omega=0.3,\Omega_{\Lambda}=0.7). In addition, we interpret the results in terms of the evolution of the stellar populations, under the assumption of passive evolution. In a single-burst scenario, the observed properties are consistent with those of a stellar population formed at z>2 (for \Omega=1, \Omega_{\Lambda}=0, H_0=50 \kms Mpc^{-1}) or 0.8<z<1.6 (for \Omega=0.3, \Omega_{\Lambda}=0.7, H_0=65 \kms Mpc^{-1}). If a small fraction of the stellar mass is formed in a secondary burst, the primary burst may have occurred at higher z. Finally, the intercept and scatter of the FP found for field early-type galaxies and for cluster data at z~0.4 are mutually consistent, within the observational errors. If higher redshift (up to z=0.83) cluster data are considered, the ages of the stellar populations of field early-type galaxies inferred from a single-burst scenario are found to be marginally smaller than the ages derived for the cluster galaxies. [shortened]Comment: 19 pages, 23 figures, MNRAS, accepte

    Genetic Determinants of Lipid Traits in Diverse Populations from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    For the past five years, genome-wide association studies (GWAS) have identified hundreds of common variants associated with human diseases and traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. Approximately 95 loci associated with lipid levels have been identified primarily among populations of European ancestry. The Population Architecture using Genomics and Epidemiology (PAGE) study was established in 2008 to characterize GWAS–identified variants in diverse population-based studies. We genotyped 49 GWAS–identified SNPs associated with one or more lipid traits in at least two PAGE studies and across six racial/ethnic groups. We performed a meta-analysis testing for SNP associations with fasting HDL-C, LDL-C, and ln(TG) levels in self-identified European American (∼20,000), African American (∼9,000), American Indian (∼6,000), Mexican American/Hispanic (∼2,500), Japanese/East Asian (∼690), and Pacific Islander/Native Hawaiian (∼175) adults, regardless of lipid-lowering medication use. We replicated 55 of 60 (92%) SNP associations tested in European Americans at p<0.05. Despite sufficient power, we were unable to replicate ABCA1 rs4149268 and rs1883025, CETP rs1864163, and TTC39B rs471364 previously associated with HDL-C and MAFB rs6102059 previously associated with LDL-C. Based on significance (p<0.05) and consistent direction of effect, a majority of replicated genotype-phentoype associations for HDL-C, LDL-C, and ln(TG) in European Americans generalized to African Americans (48%, 61%, and 57%), American Indians (45%, 64%, and 77%), and Mexican Americans/Hispanics (57%, 56%, and 86%). Overall, 16 associations generalized across all three populations. For the associations that did not generalize, differences in effect sizes, allele frequencies, and linkage disequilibrium offer clues to the next generation of association studies for these traits
    • …
    corecore