277 research outputs found

    Mitochondrial contact site and cristae organizing system (MICOS) machinery supports heme biosynthesis by enabling optimal performance of ferrochelatase

    Get PDF
    Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied and its biosynthetic enzymes structurally characterized to varying extents. Nevertheless, understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Therefore, we investigated the molecular organization as well as the physical and genetic interactions of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and genetic analyses revealed dynamic association of Hem15 with Mic60, a core component of the mitochondrial contact site and cristae organizing system (MICOS). Loss of MICOS negatively impacts Hem15 activity, affects the size of the Hem15 high-mass complex, and results in accumulation of reactive and potentially toxic tetrapyrrole precursors that may cause oxidative damage. Restoring intermembrane connectivity in MICOS-deficient cells mitigates these cytotoxic effects. These data provide new insights into how heme biosynthetic machinery is organized and regulated, linking mitochondrial architecture-organizing factors to heme homeostasis

    1960: Abilene Christian College Lectures - Full Text

    Get PDF
    Table of Contents: Theme Speeches: Christian Faith in the Modern World Basis of Faith - Leonard Mullens - 9 Authority in Christianity - John T. Smithson, Jr. - 27 Origin and Preservation of the Bible - Neil R. Lightfoot - 44 Alleged Discrepancies of the Bible - David H. Bobo - 62 The Unity of the Bible - Jack Meyer - 91 Faith and Reason - Joe Sanders - 115 The Reasonableness of Supernaturalism - Virgil Trout - 126 The Present Statue of the Doctrine of Organic Evolution - J.D. Thomas - 146 The Nature of Man - Roy F. Osborne, Jr. - 181 Modern Challenges to Christian Morals - Carl Spain - 199 The Christ, Whose Son is He? - Gordon Teel - 232 Special Speeches Teaching the Word of God in Korea - L. Haskell Chessfire - 255 The Influence of Christian Education - Judge Jack Pope - 276 Mission Opportunities in the Far East - Harry Robert Fox - 288 Mission Work in Austria - Robert Skelton - 303 Report from Switzerland - Heinrich Blum - 313 The Work in Nigeria - Rees Byrant - 320 The Training of Evangelists in Foreign Fields - Reiner Kallus - 331 Christian Scholarships - Everett Ferguson - 340 Evangelizing the World - A.R. Holton - 349 Panel Discussions The Significance of the Dead Sea Scrolls The Scrolls and the Text of the Bible - Paul Rotenberry - 357 The Relation between the Religion of the Essenes and that of Early Christians - Jay Smith - 366 Biblical Interpretation Expediency and Pattern Authority - J.W. Roberts - 381 Examples in Pattern Authority - Thomas B. Warren - 392 Mental Health and Sin The Present State of Mental Health Knowledge - Donald R. Sime - 409 The Relationship of Mental Health Problems to Sin - Paul Easley - 421 The Teenager The Problems of Youth - Mack Wayne Craig - 432 Influences for Good - Wyatt Sawyer - 443 The Benefits of Abilene Christian College To the Church - Hulen Jackson - 451 To The Home - Robert S. Bell - 459 \u27To the Community - Louie Welch - 465 Expenses At Abilene Christian College - James C. Kerr - 469 The Graduate School at Abilene Christian College What I Am Getting Now in the ACC Graduate Program - Harold Vanderpool - 475 How the ACC Graduate Program Has Stood Up - Everett Ferguson - 481 What the ACC Graduate Program Ought To Be - Frank Pack - 486 The Importance to the Church of the ACC Graduate Program A.R. Holton - 490 Beware: Large File Size Uploaded by Jackson Hage

    Assesing use and suitability of scanning electron microscopy in the analysis of micro remains in dental calculus

    Get PDF
    Dental calculus is increasingly recognized as a major reservoir of dietary information. Palaeodietary studies using plant and animal micro remains (e.g. phytoliths, pollen, sponge spicules, and starch grains) trapped in calculus have the potential to revise our knowledge of the dietary role of plants in past populations. The conventional methods used to isolate and identify these micro remains rely on removing them from their microenvironment in the calculus, thus the microenvironment that traps and preserves micro remains is not understood. By using scanning electron microscopy and energy dispersive X-ray spectroscopy (SEMeEDX) on modern chimpanzee calculus from the Taï Forest, Côte d¿Ivoire, and human calculus from the Chalcolithic site of Camino del Molino, Spain, we present the first reported observations on characteristics of the matrix setting that are conducive to the survival of starch in dental calculus. We also assess the potential for SEMeEDX to detect starch and differentiate it from structurally and molecularly similar substrates. We demonstrate that SEMeEDX may offer a nondestructive technique for studying micro remains in certain contexts. Finally, we compare traditional optical analytical techniques (OM) with less invasive electron microscopy. The results indicate that SEM-EDX and OM are both effective for observing micro remains in calculus, but differ in their analytical resolution to identify different micro remains, and we therefore recommend a sequential use of both techniques

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    β-Blockers and Mortality After Acute Myocardial Infarction in Patients Without Heart Failure or Ventricular Dysfunction

    Get PDF
    Background: For acute myocardial infarction (AMI) without heart failure (HF), it is unclear if β-blockers are associated with reduced mortality. Objectives: The goal of this study was to determine the association between β-blocker use and mortality in patients with AMI without HF or left ventricular systolic dysfunction (LVSD). Methods: This cohort study used national English and Welsh registry data from the Myocardial Ischaemia National Audit Project. A total of 179,810 survivors of hospitalization with AMI without HF or LVSD, between January 1, 2007, and June 30, 2013 (final follow-up: December 31, 2013), were assessed. Survival-time inverse probability weighting propensity scores and instrumental variable analyses were used to investigate the association between the use of β-blockers and 1-year mortality. Results: Of 91,895 patients with ST-segment elevation myocardial infarction and 87,915 patients with non–ST-segment elevation myocardial infarction, 88,542 (96.4%) and 81,933 (93.2%) received β-blockers, respectively. For the entire cohort, with >163,772 person-years of observation, there were 9,373 deaths (5.2%). Unadjusted 1-year mortality was lower for patients who received β-blockers compared with those who did not (4.9% vs. 11.2%; p < 0.001). However, after weighting and adjustment, there was no significant difference in mortality between those with and without β-blocker use (average treatment effect [ATE] coefficient: 0.07; 95% confidence interval [CI]: −0.60 to 0.75; p = 0.827). Findings were similar for ST-segment elevation myocardial infarction (ATE coefficient: 0.30; 95% CI: −0.98 to 1.58; p = 0.637) and non–ST-segment elevation myocardial infarction (ATE coefficient: −0.07; 95% CI: −0.68 to 0.54; p = 0.819). Conclusions: Among survivors of hospitalization with AMI who did not have HF or LVSD as recorded in the hospital, the use of β-blockers was not associated with a lower risk of death at any time point up to 1 year. (β-Blocker Use and Mortality in Hospital Survivors of Acute Myocardial Infarction Without Heart Failure; NCT02786654)

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
    corecore