1,331 research outputs found
A framework for the simulation of structural software evolution
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures
Integration of highly probabilistic sources into optical quantum architectures: perpetual quantum computation
In this paper we introduce a design for an optical topological cluster state
computer constructed exclusively from a single quantum component. Unlike
previous efforts we eliminate the need for on demand, high fidelity photon
sources and detectors and replace them with the same device utilised to create
photon/photon entanglement. This introduces highly probabilistic elements into
the optical architecture while maintaining complete specificity of the
structure and operation for a large scale computer. Photons in this system are
continually recycled back into the preparation network, allowing for a
arbitrarily deep 3D cluster to be prepared using a comparatively small number
of photonic qubits and consequently the elimination of high frequency,
deterministic photon sources.Comment: 19 pages, 13 Figs (2 Appendices with additional Figs.). Comments
welcom
NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS ARE ANTI-INFLAMMATORY AND TARGET DRY AGE-RELATED MACULAR DEGENERATION
Age-related macular degeneration (AMD) is a principal cause of blindness in the United States and other industrialized nations. An estimated 10 million Americans are afflicted with AMD, which is comparable in scope to the 12 million living with cancer, or the 5 million with Alzheimer’s disease. The prevalence of AMD steadily increases with age, affecting 2% of the population at age 40, and one in four people by age 80. For reasons that are not fully understood, AMD is more common in lightly-pigmented and female populations. Treatment of AMD is largely an unmet need: There are no FDA approved therapies except for a small percentage of individuals with end-stage disease. This dissertation investigates the mechanisms of AMD pathogenesis and offers insight into novel therapeutic strategies for this disease
Compositions and Methods for Treating Retinal Degradation
The present disclosure relates to compositions and methods for treating retinal damage and/or retinal degradation. More specifically, this disclosure relates to methods for treating degradation of the retinal pigment epithelium by administering compositions comprising a nucleoside and/or a nucleoside or nucleotide reverse transcriptase inhibitor
Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide
Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron-hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10(25)/m(3). The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics. (C) 2014 Author(s)
The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data
[Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new
discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the
Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial
equator. A subsample of 48 clusters within the 270 square degree region
overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14
Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters,
the sample is studied further through a "Profile Based Amplitude Analysis"
using a single filter at a fixed \theta_500 = 5.9' angular scale. This new
approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the
relationship between the cluster characteristic size (R_500) and the integrated
Compton parameter (Y_500). The UPP scalings are found to be nearly identical to
an adiabatic model, while a model incorporating non-thermal pressure better
matches dynamical mass measurements and masses from the South Pole Telescope. A
high signal to noise ratio subsample of 15 ACT clusters is used to obtain
cosmological constraints. We first confirm that constraints from SZ data are
limited by uncertainty in the scaling relation parameters rather than sample
size or measurement uncertainty. We next add in seven clusters from the ACT
Southern survey, including their dynamical mass measurements based on galaxy
velocity dispersions. In combination with WMAP7 these data simultaneously
constrain the scaling relation and cosmological parameters, yielding \sigma_8 =
0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include
marginalization over a 15% bias in dynamical mass relative to the true halo
mass. In an extension to LCDM that incorporates non-zero neutrino mass density,
we combine our data with WMAP7+BAO+Hubble constant measurements to constrain
\Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle
Physic
Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope
We report the first detection of the gravitational lensing of the cosmic
microwave background through a measurement of the four-point correlation
function in the temperature maps made by the Atacama Cosmology Telescope. We
verify our detection by calculating the levels of potential contaminants and
performing a number of null tests. The resulting convergence power spectrum at
2-degree angular scales measures the amplitude of matter density fluctuations
on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The
measured amplitude of the signal agrees with Lambda Cold Dark Matter cosmology
predictions. Since the amplitude of the convergence power spectrum scales as
the square of the amplitude of the density fluctuations, the 4-sigma detection
of the lensing signal measures the amplitude of density fluctuations to 12%.Comment: 4 pages, 4 figures, replaced title and author list with version
accepted by Physical Review Letters. Likelihood code can be downloaded from
http://bccp.lbl.gov/~sudeep/ACTLensLike.htm
Age-related decline in associative learning in healthy Chinese adults
10.1371/journal.pone.0080648PLoS ONE811-POLN
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.
BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV
A measurement of the production cross-section for top quark pairs(\ttbar)
in collisions at \sqrt{s}=7 \TeV is presented using data recorded with
the ATLAS detector at the Large Hadron Collider. Events are selected in two
different topologies: single lepton (electron or muon ) with large
missing transverse energy and at least four jets, and dilepton (,
or ) with large missing transverse energy and at least two jets. In a
data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton
topology and 9 events in the dilepton topology. The corresponding expected
backgrounds from non-\ttbar Standard Model processes are estimated using
data-driven methods and determined to be events and events, respectively. The kinematic properties of the selected events are
consistent with SM \ttbar production. The inclusive top quark pair production
cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where
the first uncertainty is statistical and the second systematic. The measurement
agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables,
CERN-PH number and final journal adde
- …
