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Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been

investigated by bias dependent reflectivity measurements. The threshold voltages for

electrocoloration and electroforming are independent of layer thickness and correlate with the

bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel

defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating

process mitigates injection barriers. The dynamic junction formation is compared to that of a light

emitting electrochemical cell. A critical defect density for electroforming is 1025/m3. The electro-

formed alkali halide layer can be considered as a highly doped semiconductor with metallic trans-

port characteristics. VC 2014 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4903831]

The electrical resistance of metal-insulator-metal diodes

with wide-bandgap ionic semiconductors can be switched af-

ter electroforming upon applying a high bias voltage. The

change in resistance is often non-volatile and can be utilized

in electronic storage of information.1 In the operation of

such resistive switching electronic memory cells, the ability

to control the electroforming step is the key to the success as

a device technology. Electroforming has been investigated

especially for metal oxides.2–5 The forming process is due to

‘soft’ dielectric breakdown of the oxide,6 and has been

related to formation of oxygen vacancies in the oxide.7

However, apart from metal oxides, also metal halides show

electroforming and resistive switching8,9 and provide another

model system to elucidate mechanism(s) of electroforming.

Here, we investigate electroforming in metal-alkali hali-

de-semiconducting polymer-metal diodes. The semiconduct-

ing polymer acts as a current limiter preventing ‘hard’

breakdown, resulting in fully shorted diodes.10 The alkali

halides provide a homologous series of wide-bandgap ionic

semiconductors. We find that the bias voltage required for

electroforming of alkali halide–polymer diodes correlates

with the bandgap of the alkali halide and involves electroco-

loration of the semiconductor. The electro-optical data are

consistent with defect formation in alkali halides11,12 with

electrogenerated (self-trapped) excitons as intermediate, i.e.,

the same mechanism as for creation of radiation induced

defects. Voltage-induced defect formation is a self-

accelerating process in which defects formed mitigate injec-

tion barriers for parental charge carriers. As a consequence,

the electroforming voltage is reduced to the bandgap of the

ionic semiconductor.

Indium-tin-oxide(ITO)/alkali halide/poly(spirofluorene)/

Ba/Al diodes were fabricated by thermal sublimation of alkali

halide under 10�6 millibar onto glass substrates with patterned

ITO. ITO substrates were cleaned, using in order, acetone,

soap scrubbing, and isopropanol. The poly(spirofluorene)

(Merck, SPB-02T) was dissolved in toluene at a concentration

of 10 mg/ml and spin coated at a speed of 3500 rpm.

Subsequently, Ba and Al were deposited by sublimation under

vacuum. Diodes on ITO substrates were kept under inert

atmosphere (N2; O2, H2O< 1 ppm) at all times during fabrica-

tion and characterization. Throughout this study, positive bias

is defined as the ITO bottom electrode being charged positive.

Current density-voltage (J-V) characteristics were recorded

with an Agilent 4155C semiconductor parameter analyzer. J-
V sweeps were recorded with 50 mV step and 40 ms integra-

tion time. Reflection experiments were performed using a

Perkin Elmer Lambda 900 UV-Vis-NIR spectrometer with a

module for specular reflection measurements.

To induce electroforming, pristine ITO/alkali halide/pol-

y(spirofluorene)/Ba/Al diodes were submitted to sequential

cyclic current-voltage (J-V) scans with stepwise increase of

the maximum bias, see Fig. 1. The current densities show a

specific type of hysteresis. In the forward scan at a voltage to

which the diode has not been subjected before, the current

density is considerable and depends on the sweep rate. In the

backward part of the scan, the current density is much

smaller. Furthermore, current densities at voltages that have

already been applied to diode before, are much lower. This

peculiar, history dependent hysteresis in the J-V characteris-

tics has been reported for metal/Al2O3/poly(spirofluorene)/

metal diodes and is attributed to trapping of electrons.13
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When the bias applied to the ITO/LiF/poly(spirofluor-

ene)/Ba/Al reaches 14 V, a sudden increase in current density

occurs (Fig. 1). Upon the backward sweep from þ14 V to

zero bias, the current density remains high. Near zero bias,

the J-V characteristic is almost Ohmic. The diode has

become electroformed. We mark the voltage at which the

surge in current density occurs (þ14 V) as the electroforming

voltage.

Forming voltages for diodes with alkali halide layers of

different thickness were determined.14,15 We find no signifi-

cant variation with the thickness of the alkali halide, which

shows that the electroforming process is not driven by the

electric field. The electroforming has been investigated for a

series of alkali halides. In Fig. 2(a), electroforming voltages

for ITO/alkali halide/poly(spirofluorene)/Ba/Al diodes with

10 different alkali halides are shown as function of the elec-

tronic bandgap of the alkali halide.16 As can be seen, the

forming voltage correlates with the bandgap of the alkali

halide.

To further investigate electroforming, we have employed

optical reflection spectroscopy as a function of applied bias.

The use of a transparent ITO bottom contact allows optical

access to the semiconducting alkali halide and polymer layers.

The metal back electrode acts as a mirror. As an example, we

show in Fig. 3 the influence of continuously applied bias volt-

age on the reflection of light by ITO/CsI(100 nm)/poly(spiro-

fluorene)/Ba/Al diode. Application of bias voltage up to þ2 V

does not result in any significant changes in reflectance.

However, bias voltages exceeding þ2 V induce a change in

reflectance DR¼R(x volt) � R(0 volt). The relative change in

reflectivity �DR / Ro with Ro the reflectance at zero bias

shows a broad absorption band at 1.03 eV photon energy. We

attribute this band to voltage induced defects in the alkali ha-

lide layer. The bias voltage at which the relative change in re-

flectance DR / Ro exceeds 0.04 is arbitrarily taken as the

electrocoloration voltage (Vcolor).

The voltage-induced changes in the reflectivity of the

diodes are fully reversible for bias voltages below the electro-

forming voltage. In Fig. 4, we illustrate the time evolution of

the normalized reflectance of a ITO/CsI (100 nm)/poly(spiro-

fluorene) (80 nm)/Ba/Al diode probed at 1.0 eV photon

FIG. 1. J-V characteristics of a pristine ITO/LiF (80 nm)/poly(spirofluore-

ne)(80 nm)/Ba/Al diode during subsequent cyclic voltage sweeps (0 V! Vmax

! 0 V) where the maximum voltage Vmax is raised in steps of 1 V. (a) the ini-

tial scans up to Vmax¼þ4 V. (b) The complete series of sweeps ending with

electroforming at Vform¼þ14 V.

FIG. 2. (a) Electroforming voltages for ITO/alkali halide/poly(spirofluore-

ne)(80 nm)/Ba/Al diodes plotted versus the band gap of the alkali halide.

Error bars indicate the standard deviation of the set of measurements. (b)

Electrocoloration voltage ITO/alkali halide/poly(spirofluorene)(80 nm)/Ba/

Al diodes. The thickness of the alkali halide layers is 100 nm, except for

LiCl where it is 50 nm. Dashed lines serve as a guide to the eye.

FIG. 3. Relative differential reflectance �DR=R0 versus photon energy for

an ITO/CsI(100 nm)/poly(spirofluorene)(80 nm)/Ba/Al diode for different

values of the applied bias voltage. R0 is the reflectivity of the pristine diode.

233502-2 Bory et al. Appl. Phys. Lett. 105, 233502 (2014)
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energy, during the application of a time-dependent bias volt-

age with saw tooth profile (see Fig. 4(a)). The profile includes

intervals of zero bias to ensure equilibration of the diode.

While ramping the bias from �2 to þ4 V (see Fig. 4(b)), a

sudden drop in the reflectivity occurs when the bias voltage

exceeds þ 3 V. Upon reaching the maximal bias, the reflec-

tance reaches a minimum and fully recovers when lowering

the bias again to 0 volt. The electrocoloration can be repeated

several times.

The onset voltage for electrocoloration can be deter-

mined as shown in Fig. 4(a) by extrapolating the baseline

and the linear part of the downward sloping reflectance-time

curve. The voltage at which the two extrapolated lines inter-

sect is an alternative measure for Vcolor. For CsI, we then find

a coloration voltage Vcolor¼þ3 V, practically independent

of the thickness of the CsI layer.14 Coloration voltages for all

alkali halides investigated, determined by the two methods

discussed above, are shown in Fig. 2(b). The coloration volt-

age, which is generally lower than the electroforming volt-

age, also correlates with the bandgap of the alkali halide.

The current densities through the ITO/CsI/polyspiro-

fluorene diodes have been measured simultaneously with the

bias voltage dependence of the optical reflectivity, see Figs.

4(c) and 4(d). When increasing the bias from �2 to þ4 V,

the current density approaches an exponential dependence

on bias. Upon lowering the bias from þ4 V, the current den-

sity becomes negative at þ1 V bias and reaches its most neg-

ative value around zero bias. Upon further decreasing the

bias to �2 V, the current density decays to zero. The nega-

tive, transient current under short-circuit conditions indicates

the release of charge accumulated in the semiconducting

layers under forward bias. Integrating this negative part of

the current density, we find that approximately 4� 1017 ele-

mentary charges can be stored in the diode per m2. This

number is essentially independent of the thickness of the CsI

layer, and similar densities are obtained for other alkali hal-

ides.14 The charge density extracted is more than an order of

magnitude larger than estimated for a capacitor with a

100 nm thick, fully insulating alkali halide layer with er¼ 9.

Hence, we argue that upon application of a bias, positive

charge is accumulated in the alkali halide layer.

In the next paragraphs, we present a step-by-step inter-

pretation of the experimental data presented above in terms

of a tentative, comprehensive model for electrocoloration

and electroforming that is illustrated graphically in Fig. 5.

When applying positive bias voltage to the ITO/alkali ha-

lide/poly(spirofluorene)/Ba/Al diodes, electrons are injected

into the polymeric semiconductor via the quasi-Ohmic Ba/Al

electrode17 and get trapped in deep trap sites at the alkali ha-

lide/polymer interface (See Fig. 5(a)). The trapping of elec-

trons explains the hysteresis in the low voltage range

illustrated in Fig. 1.13,14 The nature of these trap sites is not

known; ubiquitous water and molecular oxygen are likely

candidates.

At higher bias, but still lower than the bandgap, the alkali

halide starts to conduct electrons (Fig. 5(b)). We note that in

this bias region, the diodes show high rectification, which

excludes leakage currents via shorts.14,15 The electron current

is supported by the high mobility of electrons in alkali hal-

ides18 and detailed analysis of the voltage dependence for

diodes containing LiF layers of different thickness.19 The

trapping of electrons induces alignment of the conduction

bands of polymer and alkalihalide and facilitates the transport

of electrons through the alkalihalide. The presence of elec-

trons in the alkalihalide is a prerequisite for electron-hole

recombination leading to defect formation (see below).

Importantly, when the bias voltage exceeds the bandgap

of the alkali halide (V�Eg, Fig. 5(c)), injection of holes

becomes energetically allowed. There still is a large injection

barrier for this minority carrier; hence, the rate for hole

FIG. 4. Normalized reflectance R and current density J for an ITO/CsI

(100 nm)/poly(spirofluorene) (80 nm)/Ba/Al diode as function of time during

application of the time-dependent bias voltage shown in (a). The dashed

lines show the graphical determination of the electrocoloration voltage

Vcolor. (b) Normalized reflectance at a photon energy of 1.0 eV. (c) Positive

part of the current density J. (d) negative part of the current density.

FIG. 5. Schematic representation of elementary processes leading to electro-

coloration and eventually electroforming of ITO/alkali halide/poly(spirofluor-

ene)/Ba/Al diodes. Blue ribbons represent chains of poly(spirofluorene), red

and blue dots the alkali and halide ions. Panels (a)–(h) correspond to subse-

quent processes induced by increasing bias voltage.

233502-3 Bory et al. Appl. Phys. Lett. 105, 233502 (2014)
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injection is initially low. However, as we will argue below,

injection of a hole with small but finite probability starts a

self-accelerating process resulting in a lowering of the injec-

tion barrier. Electroluminescence measurements on ITO/alkali

halide/polymer/Ba/Al diodes support injection of holes at bias

voltages close to the bandgap of the alkali halide.14 Moreover,

for pristine diodes, the onset of electroluminescence coincides

with electroforming.15 The injected hole can recombine with

an electron forming an exciton. Electroluminescence from

ITO/CsI/Al diodes confirms injection and recombination of

electrons and holes in the alkali halide.14

Excitons in alkali halides are known to undergo self-

trapping, a process involving displacement of a halide atom

away from its equilibrium position (Fig. 5(d)). At ambient

temperature, the self-trapped exciton can dissociate into a

Frenkel defect pair consisting of an anion vacancy filled with

an electron (F-center) and a halide interstitial (H-center,

Fig. 5(e)).11,16,20,21 Under prolonged bias stress, defects will

accumulate and F-center aggregates are formed, similar to

the case of optical defect generation in LiF by short laser

pulses (Fig. 5(f)).22

Electronic transitions between quantized states of the

confined electron associated with the F centers give rise to

intense defect absorption bands and strong coloration. Due

to the more extended delocalization of the electrons in the

aggregated defects, the optical transitions in aggregated

defects occur at lower photon energies in comparison with

isolated defects. The prominent defect absorption band at

1 eV for CsI illustrated in Fig. 3 is consistent with the M
band attributed to two neutral F centers on adjacent lattice

positions.23 Similarly, the defect band at 1.5 eV in LiF can

also be assigned to aggregated F-centers, viz., F2
þ and F4

defects.24 We note that in the spectral region where the neu-

tral polymer has its lowest allowed absorption band

(3.0–3.5 eV), a signal with sigmoidal bandshape is observed

that matches the electro-absorption spectrum of the neutral

polymer.25 No significant bleaching of ground state absorp-

tion is observed, indicating that the density of charge carriers

residing on the polymer is small.

When the F-centers or its aggregates lose an electron,

the vacancies acquire a net positive charge relative to the

perfect lattice. Similarly, when H-centers capture an elec-

tron, they become negatively charged (H�). Under the influ-

ence of the applied bias, defects can migrate,26,27 and here,

we assume that the ionized F-centers (Fþ) migrate to the al-

kali halide/polymer interface, while H� defects move to the

ITO/alkali halide contact.

The well-established mobility of charged defects in al-

kali halides provides an explanation for the apparently very

low injection barrier for holes. Accumulation of negatively

charged interstitials at the ITO contact lowers the barrier for

hole injection (Fig. 5(h)). The hole current increases, more

charged defects are formed which results in further lowering

of the injection barrier. This self-accelerating process miti-

gates the restriction of injection barriers on the charge injec-

tion. With the restrictions on injection removed, exciton

generation is effectively limited by energy conservation and

sets in for voltages exceeding the bandgap of the alkali ha-

lide. Consequently, the electrocoloration voltage is thickness

independent and related to the bandgap of the alkali halide.

In summary, the electrocoloration provides direct exper-

imental evidence for voltage induced defect formation in al-

kali halides. The correlation between electrocoloration

voltage, electroforming voltage, and bandgap of the alkali

halides indicates that electroforming occurs when the defect

density exceeds 1025/m3, based on the areal density of

4� 1017 charges/m2 just prior to electroforming and the

layer thickness. The density for electroforming is close to the

critical defect density for the insulator-to-metal transition

from the Mott criterion28 (Ncritffi (1/5 aH)3¼ 7� 1025/m3; aH

the Bohr radius in the alkali halide with er¼ 9), suggesting

that the electroformed alkali halide layer behaves as a highly

doped semiconductor with metallic transport characteristics.

The voltage-driven electrocoloration in the alkali halide

diodes under study here resembles the behavior of organic

semiconductors with combined ionic and electrical conduc-

tivity in light emitting electrochemical cells. Application of

bias voltage exceeding the bandgap of the semiconductor

results in bipolar charge carrier injection via electrochemi-

cally doped interface regions near the contacts, independent

of the work function of the electrodes used.29
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