20 research outputs found

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches

    Multi-decadal improvements in the ecological quality of European rivers are not consistently reflected in biodiversity metrics

    Get PDF
    Humans impact terrestrial, marine and freshwater ecosystems, yet many broad-scale studies have found no systematic, negative biodiversity changes (for example, decreasing abundance or taxon richness). Here we show that mixed biodiversity responses may arise because community metrics show variable responses to anthropogenic impacts across broad spatial scales. We first quantified temporal trends in anthropogenic impacts for 1,365 riverine invertebrate communities from 23 European countries, based on similarity to least-impacted reference communities. Reference comparisons provide necessary, but often missing, baselines for evaluating whether communities are negatively impacted or have improved (less or more similar, respectively). We then determined whether changing impacts were consistently reflected in metrics of community abundance, taxon richness, evenness and composition. Invertebrate communities improved, that is, became more similar to reference conditions, from 1992 until the 2010s, after which improvements plateaued. Improvements were generally reflected by higher taxon richness, providing evidence that certain community metrics can broadly indicate anthropogenic impacts. However, richness responses were highly variable among sites, and we found no consistent responses in community abundance, evenness or composition. These findings suggest that, without sufficient data and careful metric selection, many common community metrics cannot reliably reflect anthropogenic impacts, helping explain the prevalence of mixed biodiversity trends.We thank J. England for assistance with calculating ecological quality and the biomonitoring indices in the UK. Funding for authors, data collection and processing was provided by the European Union Horizon 2020 project eLTER PLUS (grant number 871128). F.A. was supported by the Swiss National Science Foundation (grant numbers 310030_197410 and 31003A_173074) and the University of Zurich Research Priority Program Global Change and Biodiversity. J.B. and M.A.-C. were funded by the European Commission, under the L‘Instrument Financier pour l’Environnement (LIFE) Nature and Biodiversity program, as part of the project LIFE-DIVAQUA (LIFE18 NAT/ES/000121) and also by the project ‘WATERLANDS’ (PID2019-107085RB-I00) funded by the Ministerio de Ciencia, InnovaciĂłn y Universidades (MCIN) and Agencia Estatal de InvestigaciĂłn (AEI; MCIN/AEI/10.13039/501100011033/ and by the European Regional Development Fund (ERDF) ‘A way of making Europe’. N.J.B. and V.P. were supported by the Lithuanian Environmental Protection Agency (https://aaa.lrv.lt/) who collected the data and were funded by the Lithuanian Research Council (project number S-PD-22-72). J.H. was supported by the Academy of Finland (grant number 331957). S.C.J. acknowledges funding by the Leibniz Competition project Freshwater Megafauna Futures and the German Federal Ministry of Education and Research (Bundesministerium fĂŒr Bildung und Forschung or BMBF; 033W034A). A.L. acknowledges funding by the Spanish Ministry of Science and Innovation (PID2020-115830GB-100). P.P., M.P. and M.S. were supported by the Czech Science Foundation (GA23-05268S and P505-20-17305S) and thank the Czech Hydrometeorological Institute and the state enterprises PovodĂ­ for the data used to calculate ecological quality metrics from the Czech surface water monitoring program. H.T. was supported by the Estonian Research Council (number PRG1266) and by the Estonian national program ‘Humanitarian and natural science collections’. M.J.F. acknowledges the support of Fundação para a CiĂȘncia e Tecnologia, Portugal, through the projects UIDB/04292/2020 and UIDP/04292/2020 granted to the Marine and Environmental Sciences Centre, LA/P/0069/2020 granted to the Associate Laboratory Aquatic Research Network (ARNET), and a Call EstĂ­mulo ao Emprego CientĂ­fico (CEEC) contract.Peer reviewe

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.N. Kaffenberger helped with initial data compilation. Funding for authors and data collection and processing was provided by the EU Horizon 2020 project eLTER PLUS (grant agreement no. 871128); the German Federal Ministry of Education and Research (BMBF; 033W034A); the German Research Foundation (DFG FZT 118, 202548816); Czech Republic project no. P505-20-17305S; the Leibniz Competition (J45/2018, P74/2018); the Spanish Ministerio de EconomĂ­a, Industria y Competitividad—Agencia Estatal de InvestigaciĂłn and the European Regional Development Fund (MECODISPER project CTM 2017-89295-P); RamĂłn y Cajal contracts and the project funded by the Spanish Ministry of Science and Innovation (RYC2019-027446-I, RYC2020-029829-I, PID2020-115830GB-100); the Danish Environment Agency; the Norwegian Environment Agency; SOMINCOR—Lundin mining & FCT—Fundação para a CiĂȘncia e Tecnologia, Portugal; the Swedish University of Agricultural Sciences; the Swiss National Science Foundation (grant PP00P3_179089); the EU LIFE programme (DIVAQUA project, LIFE18 NAT/ES/000121); the UK Natural Environment Research Council (GLiTRS project NE/V006886/1 and NE/R016429/1 as part of the UK-SCAPE programme); the Autonomous Province of Bolzano (Italy); and the Estonian Research Council (grant no. PRG1266), Estonian National Program ‘Humanitarian and natural science collections’. The Environment Agency of England, the Scottish Environmental Protection Agency and Natural Resources Wales provided publicly available data. We acknowledge the members of the Flanders Environment Agency for providing data. This article is a contribution of the Alliance for Freshwater Life (www.allianceforfreshwaterlife.org).Peer reviewe

    Variation in neurosurgical management of traumatic brain injury

    Get PDF
    Background: Neurosurgical management of traumatic brain injury (TBI) is challenging, with only low-quality evidence. We aimed to explore differences in neurosurgical strategies for TBI across Europe. Methods: A survey was sent to 68 centers participating in the Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. The questionnaire contained 21 questions, including the decision when to operate (or not) on traumatic acute subdural hematoma (ASDH) and intracerebral hematoma (ICH), and when to perform a decompressive craniectomy (DC) in raised intracranial pressure (ICP). Results: The survey was completed by 68 centers (100%). On average, 10 neurosurgeons work in each trauma center. In all centers, a neurosurgeon was available within 30 min. Forty percent of responders reported a thickness or volume threshold for evacuation of an ASDH. Most responders (78%) decide on a primary DC in evacuating an ASDH during the operation, when swelling is present. For ICH, 3% would perform an evacuation directly to prevent secondary deterioration and 66% only in case of clinical deterioration. Most respondents (91%) reported to consider a DC for refractory high ICP. The reported cut-off ICP for DC in refractory high ICP, however, differed: 60% uses 25 mmHg, 18% 30 mmHg, and 17% 20 mmHg. Treatment strategies varied substantially between regions, specifically for the threshold for ASDH surgery and DC for refractory raised ICP. Also within center variation was present: 31% reported variation within the hospital for inserting an ICP monitor and 43% for evacuating mass lesions. Conclusion: Despite a homogeneous organization, considerable practice variation exists of neurosurgical strategies for TBI in Europe. These results provide an incentive for comparative effectiveness research to determine elements of effective neurosurgical care

    Variation in general supportive and preventive intensive care management of traumatic brain injury: a survey in 66 neurotrauma centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study

    Get PDF
    Abstract Background General supportive and preventive measures in the intensive care management of traumatic brain injury (TBI) aim to prevent or limit secondary brain injury and optimize recovery. The aim of this survey was to assess and quantify variation in perceptions on intensive care unit (ICU) management of patients with TBI in European neurotrauma centers. Methods We performed a survey as part of the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. We analyzed 23 questions focused on: 1) circulatory and respiratory management; 2) fever control; 3) use of corticosteroids; 4) nutrition and glucose management; and 5) seizure prophylaxis and treatment. Results The survey was completed predominantly by intensivists (n = 33, 50%) and neurosurgeons (n = 23, 35%) from 66 centers (97% response rate). The most common cerebral perfusion pressure (CPP) target was > 60 mmHg (n = 39, 60%) and/or an individualized target (n = 25, 38%). To support CPP, crystalloid fluid loading (n = 60, 91%) was generally preferred over albumin (n = 15, 23%), and vasopressors (n = 63, 96%) over inotropes (n = 29, 44%). The most commonly reported target of partial pressure of carbon dioxide in arterial blood (PaCO2) was 36–40 mmHg (4.8–5.3 kPa) in case of controlled intracranial pressure (ICP) < 20 mmHg (n = 45, 69%) and PaCO2 target of 30–35 mmHg (4–4.7 kPa) in case of raised ICP (n = 40, 62%). Almost all respondents indicated to generally treat fever (n = 65, 98%) with paracetamol (n = 61, 92%) and/or external cooling (n = 49, 74%). Conventional glucose management (n = 43, 66%) was preferred over tight glycemic control (n = 18, 28%). More than half of the respondents indicated to aim for full caloric replacement within 7 days (n = 43, 66%) using enteral nutrition (n = 60, 92%). Indications for and duration of seizure prophylaxis varied, and levetiracetam was mostly reported as the agent of choice for both seizure prophylaxis (n = 32, 49%) and treatment (n = 40, 61%). Conclusions Practice preferences vary substantially regarding general supportive and preventive measures in TBI patients at ICUs of European neurotrauma centers. These results provide an opportunity for future comparative effectiveness research, since a more evidence-based uniformity in good practices in general ICU management could have a major impact on TBI outcome

    Understanding the complex dynamics of zebra mussel invasions over several decades in European rivers: drivers, impacts and predictions

    Get PDF
    The zebra mussel Dreissena polymorpha is one of the most successful, notorious, and detrimental aquatic invasive non-native species worldwide, having invaded Europe and North America while causing substantial ecological and socio-economic impacts. Here, we investigated the spatiotemporal trends in this species' invasion success using 178 macroinvertebrate abundance time series, containing 1451 records of D. polymorpha collected across nine European countries between 1972–2019. Using these raw (absolute) abundance data, we examined trends and drivers of occurrences and relative abundances of D. polymorpha within invaded communities. Meta-regression models revealed non-significant trends both at the European level and for the majority of the invaded countries, except for France (significant decreasing trend) and Hungary (marginally positive trend). At the European level, the number of D. polymorpha occurrences over time followed a flat-top bell-shaped distribution, with a steep increase between 1973–1989 followed by a plateau phase prior to significantly declining post-1998. Using a series of climatic and hydromorphological site-specific characteristics of invaded and uninvaded sites from two periods (1998–2002; 2011–2015), we found that native richness, non-native abundance, distance to the next barrier, and elevation were associated with the occurrence of D. polymorpha. We also found that higher native richness and lower latitude were related to lower relative abundances. Using Cohen's D as a measure of D. polymorpha impact, we found that biodiversity within the invaded sites was initially higher than in uninvaded ones, but then declined, suggesting differences in biodiversity trends across invaded and uninvaded sites. While our results emphasise the high invasion success of D. polymorpha, increasing stressors within the context of global change – particularly ongoing climate change – are likely to enhance invasion rates and the impact of D. polymorpha in the near future, exacerbated by the lack of timely and effective management actions

    The recovery of European freshwater biodiversity has come to a halt

    Get PDF
    Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss(1). Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity(2). Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity

    Tracking a killer shrimp: Dikerogammarus villosus invasion dynamics across Europe

    No full text
    Aim: Invasive alien species are a growing problem worldwide due to their ecological, economic and human health impacts. The “killer shrimp” Dikerogammarus villosus is a notorious invasive alien amphipod from the Ponto-Caspian region that has invaded many fresh and brackish waters across Europe. Understandings of large-scale population dynamics of highly impactful invaders such as D. villosus are lacking, inhibiting predictions of impact and efficient timing of management strategies. Hence, our aim was to assess trends and dynamics of D. villosus as well as its impacts in freshwater rivers and streams. Location: Europe. Methods: We analysed 96 European time series between 1994 and 2019 and identified trends in the relative abundance (i.e. dominance %) of D. villosus in invaded time series, as well as a set of site-specific characteristics to identify drivers and determinants of population changes and invasion dynamics using meta-regression modelling. We also looked at the spread over space and time to estimate the invasion speed (km/year) of D. villosus in Europe. We investigated the impact of D. villosus abundance on recipient community metrics (i.e. abundance, taxa richness, temporal turnover, Shannon diversity and Pielou evenness) using generalized linear models. Results: Population trends varied across the time series. Nevertheless, community dominance of D. villosus increased over time across all time series. The frequency of occurrences (used as a proxy for invader spread) was well described by a Pareto distribution, whereby we estimated a lag phase (i.e. the time between introduction and spatial expansion) of approximately 28 years, followed by a gradual increase before new occurrences declined rapidly in the long term. D. villosus population change was associated with decreased taxa richness, community turnover and Shannon diversity. Main Conclusion: Our results show that D. villosus is well-established in European waters and its abundance significantly alters ecological communities. However, the multidecadal lag phase prior to observed spatial expansion suggests that initial introductions by D. villosus are cryptic, thus signalling the need for more effective early detection methods

    The faunal Ponto-Caspianization of central and western European waterways

    No full text
    As alien invasive species are a key driver of biodiversity loss, understanding patterns of rapidly changing global species compositions depends upon knowledge of invasive species population dynamics and trends at large scales. Within this context, the Ponto-Caspian region is among the most notable donor regions for aquatic invasive species in Europe. Using macroinvertebrate time series collected over 52 years (1968–2020) at 265 sites across 11 central and western European countries, we examined the occurrences, invasion rates, and abundances of freshwater Ponto-Caspian fauna. We examined whether: (i) successive Ponto-Caspian invasions follow a consistent pattern of composition pioneered by the same species, and (ii) Ponto-Caspian invasion accelerates subsequent invasion rates. In our dataset, Ponto-Caspian macroinvertebrates increased from two species in 1972 to 29 species in 2012. This trend was parallelled by a non-significant increasing trend in the abundances of Ponto-Caspian taxa. Trends in Ponto-Caspian invader richness increased significantly over time. We found a relatively uniform distribution of Ponto-Caspian macroinvertebrates across Europe without any relation to the distance to their native region. The Ponto-Caspian species that arrived first were often bivalves (46.5% of cases), particularly Dreissena polymorpha, followed secondarily by amphipods (83.8%; primarily Chelicorophium curvispinum and Dikerogammarus villosus). The time between consecutive invasions decreased significantly at our coarse regional scale, suggesting that previous alien establishments may facilitate invasions of subsequent taxa. Should alien species continue to translocate from the Ponto-Caspian region, our results suggest a high potential for their future invasion success highly connected central and western European waters. However, each species’ population may decline after an initial ‘boom’ phase or after the arrival of new invasive species, resulting in different alien species dominating over time

    Traumatic brain injury : integrated approaches to improve prevention, clinical care, and research

    Get PDF
    Rahul Raj on työryhmÀn InTBIR Participants Investigators jÀsen.Peer reviewe
    corecore