19 research outputs found

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters

    In vitro life cycle of Heterodera sacchari on Pluronic gel

    No full text
    This paper presents studies on the life cycle of Heterodera sacchari under in vitro conditions. Pluronic gel was used as a medium for growth of H. sacchari. The life cycle was completed in 7-9 weeks on rice (Oryza sativa, 'Nipponbare'). After infection, juveniles developed and reached the reproducing adult female stage at 25 days post inoculation (dpi). At 35 dpi, all females produced eggs in various numbers. Some females were translucent and eggs inside could be counted. At 49 dpi females started to tan and developed into dark brown cysts. Hatching of H. sacchari juveniles from cysts could be stimulated by 3 mM ZnCl2 but not by rice root exudates. The in vitro culture of H. sacchari on Pluronic gel can be used efficiently to collect post-infective nematode/host samples at different time points for various studies and to screen different rice cultivars for resistance/susceptibility.</p

    In vitro life cycle of Heterodera sacchari on Pluronic gel

    No full text
    This paper presents studies on the life cycle of Heterodera sacchari under in vitro conditions. Pluronic gel was used as a medium for growth of H. sacchari. The life cycle was completed in 7-9 weeks on rice (Oryza sativa, 'Nipponbare'). After infection, juveniles developed and reached the reproducing adult female stage at 25 days post inoculation (dpi). At 35 dpi, all females produced eggs in various numbers. Some females were translucent and eggs inside could be counted. At 49 dpi females started to tan and developed into dark brown cysts. Hatching of H. sacchari juveniles from cysts could be stimulated by 3 mM ZnCl2 but not by rice root exudates. The in vitro culture of H. sacchari on Pluronic gel can be used efficiently to collect post-infective nematode/host samples at different time points for various studies and to screen different rice cultivars for resistance/susceptibility.</p

    Starch Serves as Carbohydrate Storage in Nematode-Induced Syncytia1[W][OA]

    No full text
    The plant parasitic nematode Heterodera schachtii induces specific syncytial feeding sites in the roots of Arabidopsis thaliana from where it withdraws all required nutrients. Therefore, syncytia have to be well supplied with assimilates and generate strong sinks in the host plant's transport system. Import mechanisms and consequent accumulation of sucrose in syncytia were described recently. In this work, we studied the starch metabolism of syncytia. Using high-performance liquid chromatography and microscopic analyses, we demonstrated that syncytia store carbohydrates by starch accumulation. Further, we monitored the expression of genes involved in the starch metabolic pathway by gene chip analysis and quantitative reverse transcription-PCR. Finally, we provide functional proof of the importance of starch synthesis for nematode development using T-DNA insertion lines. We conclude that syncytia accumulate starch as a carbohydrate buffer to compensate for changing solute uptake by the nematode and as long-term storage during juvenile development

    Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes

    No full text
    When nematodes invade and subsequently migrate within plant roots, they generate cell wall fragments (in the form of oligogalacturonides; OGs) that can act as damage-associated molecular patterns and activate host defence responses. However, the molecular mechanisms mediating damage responses in plant–nematode interactions remain unexplored. Here, we characterized the role of a group of cell wall receptor proteins in Arabidopsis, designated as polygalacturonase-inhibiting proteins (PGIPs), during infection with the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita. PGIPs are encoded by a family of two genes in Arabidopsis, and are involved in the formation of active OG elicitors. Our results show that PGIP gene expression is strongly induced in response to cyst nematode invasion of roots. Analyses of loss-of-function mutants and overexpression lines revealed that PGIP1 expression attenuates infection of host roots by cyst nematodes, but not root-knot nematodes. The PGIP1-mediated attenuation of cyst nematode infection involves the activation of plant camalexin and indole-glucosinolate pathways. These combined results provide new insights into the molecular mechanisms underlying plant damage perception and response pathways during infection by cyst and root-knot nematodes, and establishes the function of PGIP in plant resistance to cyst nematodes
    corecore