21 research outputs found

    Global transpiration data from sap flow measurements: the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The “sapfluxnetr” R package – designed to access, visualize, and process SAPFLUXNET data – is available from CRAN.EEA Santa CruzFil: Poyatos, Rafael. Universitat Autònoma de Barcelona. Bellaterra (Cerdanyola del Vallès); EspañaFil: Poyatos, Rafael. CREAF. Bellaterra (Cerdanyola del Vallès); EspañaFil: Granda, Víctor. Universitat Autònoma de Barcelona. Bellaterra (Cerdanyola del Vallès); EspañaFil: Granda, Víctor. Joint Research Unit CREAF-CTFC. Bellaterra; EspañaFil: Flo, Víctor. Universitat Autònoma de Barcelona. Bellaterra (Cerdanyola del Vallès); EspañaFil: Adams, Mark A. Swinburne University of Technology. Faculty of Science Engineering and Technology; Australia.Fil: Adams, Mark A. University of Sydney. School of Life and Environmental Sciences; Australia.Fil: Adorján, Balázs. University of Debrecen. Faculty of Science and Technology. Department of Botany; HungríaFil: Aguadé, David. Universitat Autònoma de Barcelona. Bellaterra (Cerdanyola del Vallès); EspañaFil: Aidar, Marcos P. M. Institute of Botany. Plant Physiology and Biochemistry; BrasilFil: Allen, Scott. University of Nevada. Department of Natural Resources and Environmental Science; Estados UnidosFil: Alvarado-Barrientos, M. Susana. Instituto de Ecología A.C. Red Ecología Funcional; México.Fil: Anderson-Teixeira, Kristina J. Center for Tropical Forest Science-Forest Global Earth Observatory, Smithsonian Tropical Research Institute; PanamáFil: Anderson-Teixeira, Kristina J. Conservation Ecology Center. Smithsonian Conservation Biology Institute; Estados UnidosFil: Peri, Pablo Luis. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Santa Cruz; Argentina.Fil: Peri, Pablo Luis. Universidad Nacional de la Patagonia Austral; Argentina.Fil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Martínez-Vilalta, Jordi. CREAF. Bellaterra (Cerdanyola del Vallès); EspañaFil: Martínez-Vilalta, Jordi. Universitat Autònoma de Barcelona. Bellaterra (Cerdanyola del Vallès); Españ

    Global transpiration data from sap flow measurements: the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land?atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets,while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes.Fil: Poyatos, Rafael. Universitat Autònoma de Barcelona; EspañaFil: Granda, Víctor. Universitat Autònoma de Barcelona; EspañaFil: Flo, Víctor. Universitat Autònoma de Barcelona; EspañaFil: Adams, Mark A.. Swinburne University of Technology; Australia. University of Sydney; AustraliaFil: Adorján, Balázs. University of Debrecen; HungríaFil: Aguadé, David. Universitat Autònoma de Barcelona; EspañaFil: Aidar, Marcos P. M.. Institute of Botany; BrasilFil: Allen, Scott. University of Nevada; Estados UnidosFil: Alvarado Barrientos, M. Susana. Instituto de Ecología A.C.; MéxicoFil: Anderson Teixeira, Kristina J.. Smithsonian Tropical Research Institute; PanamáFil: Aparecido, Luiza Maria. Arizona State University; Estados Unidos. Texas A&M University; Estados UnidosFil: Arain, M. Altaf. McMaster University; CanadáFil: Aranda, Ismael. National Institute for Agricultural and Food Research and Technology; EspañaFil: Asbjornsen, Heidi. University of New Hampshire; Estados UnidosFil: Robert Baxter. Durham University; Reino UnidoFil: Beamesderfer, Eric. McMaster University; Canadá. Northern Arizona University; Estados UnidosFil: Carter Berry, Z.. Chapman University; Estados UnidosFil: Berveiller, Daniel. Université Paris Saclay; Francia. Centre National de la Recherche Scientifique; FranciaFil: Blakely, Bethany. University of Illinois at Urbana-Champaign; Estados UnidosFil: Boggs, Johnny. United States Forest Service; Estados UnidosFil: Gil Bohrer. Ohio State University; Estados UnidosFil: Bolstad, Paul V.. University of Minnesota; Estados UnidosFil: Bonal, Damien. Université de Lorraine; FranciaFil: Bracho, Rosvel. University of Florida; Estados UnidosFil: Brito, Patricia. Universidad de La Laguna; EspañaFil: Brodeur, Jason. McMaster University; CanadáFil: Casanoves, Fernando. Centro Agronómico Tropical de Investigación y Enseñanza; Costa RicaFil: Chave, Jérôme. Université Paul Sabatier; FranciaFil: Chen, Hui. Xiamen University; ChinaFil: Peri, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Tecnológica Nacional. Facultad Regional Santa Cruz. Centro de Investigaciones y Transferencia de Santa Cruz. Universidad Nacional de la Patagonia Austral. Centro de Investigaciones y Transferencia de Santa Cruz; Argentin

    Global transpiration data from sap flow measurements : the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The "sapfluxnetr" R package - designed to access, visualize, and process SAPFLUXNET data - is available from CRAN.Peer reviewe

    Global ecological drivers of transpiration regulation in trees

    Get PDF
    Universitat Autònoma de Barcelona. Programa de Doctorat en Ecologia Terrestr

    Diseño de un tanque no aireado para el cultivo de macroalgas: aplicación al tratamiento de agua de un sistema de recirculación acuícola

    No full text
    Los biofiltros con algas han demostrado su utilidad en el tratamiento de los efluentes de tanques de cultivo de peces y pueden ser integrados en sistemas de recirculación acuícola. La mayoría de los sistemas de cultivo de macroalgas utilizan aireación inferior para agitar y mantener las algas en suspensión, a la vez que la entrada de agua rica en nutrientes pasa a través de ellos. La turbulencia generada por la aireación también adelgaza la capa límite de las macroalgas, acelerando el flujo de intercambio de nutrientes. Se ha diseñado un nuevo tanque para lograr la rotación de la biomasa de macroalgas marinas mediante la proyección de los chorros de entrada de agua a una superficie curva colocada en la parte inferior del tanque. La biomasa de algas gira alrededor de un eje horizontal, lo que permite una exposición óptima a la luz y la formación de la turbulencia necesaria para disminuir la capa límite, sin utilizar aireación. Este diseño permite la utilización de la alta concentración de dióxido de carbono proveniente de la respiración de los peces, y un menor consumo de energía. Se analizaron las características hidrodinámicas del tanque, incluyendo: 1) la relación entre la fuerza ejercida por el chorro de entrada de agua y la velocidad de rotación alcanzada por la biomasa de algas, 2) la relación entre las fuerzas mínimas necesarias para iniciar la rotación de algas y la cantidad de la biomasa. Después de iniciarse la rotación, la velocidad alcanzada por la biomasa de algas fue proporcional a la raíz de la fuerza de impulsión. Sin embargo, cuando se sobrepasa un límite superior, se logra la velocidad de rotación máxima, y más aumentos en la fuerza de impulsión no contribuyen a aumentar la velocidad de rotación de las macroalgas. Se llevaron a cabo algunos experimentos de crecimiento con Ulva ohnoi en el diseño de tranque no aireado y en un tanque aireado similar. No se encontraron diferencias significativas al comparar los coeficientes medidos de crecimiento en ambos sistemas. También se llevaron a cabo algunos experimentos para probar la velocidad de descenso y la asimilación de TAN en el nuevo tanque no aireado diseñado y en un tanque aireado similar. No se encontraron diferencias significativas en la tasa de disminución de TAN entre ninguno de los sistemas. Se analizó la influencia de las bacterias oxidantes de TAN en la tasa de disminución de TAN

    Diseño de un tanque no aireado para el cultivo de macroalgas: aplicación al tratamiento de agua de un sistema de recirculación acuícola

    No full text
    Los biofiltros con algas han demostrado su utilidad en el tratamiento de los efluentes de tanques de cultivo de peces y pueden ser integrados en sistemas de recirculación acuícola. La mayoría de los sistemas de cultivo de macroalgas utilizan aireación inferior para agitar y mantener las algas en suspensión, a la vez que la entrada de agua rica en nutrientes pasa a través de ellos. La turbulencia generada por la aireación también adelgaza la capa límite de las macroalgas, acelerando el flujo de intercambio de nutrientes. Se ha diseñado un nuevo tanque para lograr la rotación de la biomasa de macroalgas marinas mediante la proyección de los chorros de entrada de agua a una superficie curva colocada en la parte inferior del tanque. La biomasa de algas gira alrededor de un eje horizontal, lo que permite una exposición óptima a la luz y la formación de la turbulencia necesaria para disminuir la capa límite, sin utilizar aireación. Este diseño permite la utilización de la alta concentración de dióxido de carbono proveniente de la respiración de los peces, y un menor consumo de energía. Se analizaron las características hidrodinámicas del tanque, incluyendo: 1) la relación entre la fuerza ejercida por el chorro de entrada de agua y la velocidad de rotación alcanzada por la biomasa de algas, 2) la relación entre las fuerzas mínimas necesarias para iniciar la rotación de algas y la cantidad de la biomasa. Después de iniciarse la rotación, la velocidad alcanzada por la biomasa de algas fue proporcional a la raíz de la fuerza de impulsión. Sin embargo, cuando se sobrepasa un límite superior, se logra la velocidad de rotación máxima, y más aumentos en la fuerza de impulsión no contribuyen a aumentar la velocidad de rotación de las macroalgas. Se llevaron a cabo algunos experimentos de crecimiento con Ulva ohnoi en el diseño de tranque no aireado y en un tanque aireado similar. No se encontraron diferencias significativas al comparar los coeficientes medidos de crecimiento en ambos sistemas. También se llevaron a cabo algunos experimentos para probar la velocidad de descenso y la asimilación de TAN en el nuevo tanque no aireado diseñado y en un tanque aireado similar. No se encontraron diferencias significativas en la tasa de disminución de TAN entre ninguno de los sistemas. Se analizó la influencia de las bacterias oxidantes de TAN en la tasa de disminución de TAN

    Global transpiration data from sap flow measurements: the SAPFLUXNET database

    Get PDF
    Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations. Here we introduce the first global compilation of whole-plant transpiration data from sap flow measurements (SAPFLUXNET, https://sapfluxnet.creaf.cat/, last access: 8 June 2021). We harmonized and quality-controlled individual datasets supplied by contributors worldwide in a semi-automatic data workflow implemented in the R programming language. Datasets include sub-daily time series of sap flow and hydrometeorological drivers for one or more growing seasons, as well as metadata on the stand characteristics, plant attributes, and technical details of the measurements. SAPFLUXNET contains 202 globally distributed datasets with sap flow time series for 2714 plants, mostly trees, of 174 species. SAPFLUXNET has a broad bioclimatic coverage, with woodland/shrubland and temperate forest biomes especially well represented (80 % of the datasets). The measurements cover a wide variety of stand structural characteristics and plant sizes. The datasets encompass the period between 1995 and 2018, with 50 % of the datasets being at least 3 years long. Accompanying radiation and vapour pressure deficit data are available for most of the datasets, while on-site soil water content is available for 56 % of the datasets. Many datasets contain data for species that make up 90 % or more of the total stand basal area, allowing the estimation of stand transpiration in diverse ecological settings. SAPFLUXNET adds to existing plant trait datasets, ecosystem flux networks, and remote sensing products to help increase our understanding of plant water use, plant responses to drought, and ecohydrological processes. SAPFLUXNET version 0.1.5 is freely available from the Zenodo repository (https://doi.org/10.5281/zenodo.3971689; Poyatos et al., 2020a). The “sapfluxnetr” R package – designed to access, visualize, and process SAPFLUXNET data – is available from CRAN.info:eu-repo/semantics/publishedVersio

    The potential of wastewater grown microalgae for agricultural purposes: Contaminants of emerging concern, heavy metals and pathogens assessment

    Get PDF
    In the coming years, the use of microalgal biomass as agricultural biofertilizers has shown promising results. The use of wastewater as culture medium has resulted in the reduction of production costs, making microalgae-based fertilizers highly attractive for farmers. However, the occurrence of specific pollutants in wastewater, like pathogens, heavy metals and contaminants of emerging concern (CECs), such as pharmaceuticals and personal care products may pose a risk on human health. This study presents an holistic assessment of the production and use of microalgal biomass grown in municipal wastewater as biofertilizer in agriculture. Results showed that pathogens and heavy metals concentrations in the microalgal biomass were below the threshold established by the European regulation for fertilizing products, except for cadmium. Regarding CECs, 25 out of 29 compounds were found in wastewater. However, only three of them (hydrocinnamic acid, caffeine, and bisphenol A) were found in the microalgae biomass used as biofertilizer. Agronomic tests were performed for lettuce growth in greenhouse. Four treatments were studied, comparing the use of microalgae biofertilizer with a conventional mineral fertilizer, and also a combination of both of them. Results suggested that microalgae can help reducing the mineral nitrogen dose, since similar fresh shoot weights were obtained in the plants grown with the different assessed fertilizers. Lettuce samples revealed the presence of cadmium and CECs in all the treatments including both negative and positive controls, which suggests that their presence was not linked to the microalgae biomass. On the whole, this study revealed that wastewater grown microalgae can be used for agricultural purposes reducing mineral N need and guaranteeing health safety of the crops.This research was supported by the European Commission (FERTILWASTES-EFA307/19) and the Spanish Ministry of Science and Innovation (CYRCLE-PID2020-113866RA-I00). E. Uggetti and R. Díez-Montero would like to thank the Spanish Ministry of Industry and Economy for their research grants [RYC2018-025514-I and ICJ2019-042069-I, respectively]. A. Álvarez-González kindly acknowledge the Departament de Recerca i Universitats de la Generalitat de Catalunya for her PhD scholarship (FI AGAUR, 2022FI_B 00488). E. Gonzalez-Flo would like to thank the European Union-NextGenerationEU, Ministry of Universities and Recovery, Transformation and Resilience Plan for her research grant (2021UPF-MS-12). M. Escolà Casas wants to thank the Beatriu de Pinós 2018 grant-programme (MSCA grant agreement number 801370) for the funding.Peer reviewe

    Yearly fluctuations of flower landscape in a Mediterranean scrubland : consequences for floral resource availability

    No full text
    Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology(duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change

    Yearly fluctuations of flower landscape in a Mediterranean scrubland: Consequences for floral resource availability

    Get PDF
    <div><p>Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change.</p></div
    corecore