11 research outputs found

    PicU, a second serine protease autotransporter of uropathogenic Escherichia coli

    Full text link
    Escherichia coli is the major Æ;tiological agent of urinary tract infections (UTI). Like diarrhoeagenic strains of E. coli , uropathogenic isolates possess virulence determinants that distinguish them from commensal strains and allow them to produce the clinical manifestations associated with UTI. Several autotransporter proteins have been associated with the ability of E. coli , and other Gram-negative bacteria, to cause disease. Recently, we described the existence within uropathogenic E. coli (UPEC) strains of Sat, a toxin of the serine protease autotransporter of Enterobacteriaceae (SPATE) subfamily. Using features common to proteins secreted via the autotransporter pathway we have identified nine additional autotransporter proteins from the genomic sequence data of UPEC CFT073. Surprisingly, two additional members of the SPATE subfamily were identified. One protein, designated PicU, was homologous to the Pic protein identified in Shigella flexneri and enteroaggregative E. coli . The PicU protein was expressed and investigated for functional activity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72222/1/S0378-1097_03_00862-0.pd

    An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers

    Get PDF
    Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. Methods: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. Results: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. Conclusions: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.Peer reviewe

    Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers

    Get PDF
    Abstract Introduction Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). Methods To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. Results Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 × 10-4). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 × 10-5, P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df-P = 0.007; rs1292011 2df-P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 × 10-5) and there was marginal evidence of association with ER-negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049). Conclusions The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers

    Cryopreservation of Composite Tissue Transplants

    No full text
    Composite tissue allotransplantation holds great promise for upper extremity reconstruction but is limited by donor part availability. Cryopreservation may increase the availability of donor parts and even reduce antigenicity. The purpose of the study was to evaluate the viability of cryopreserved composite tissues and to demonstrate the feasibility of microvascular isotransplantation of cryopreserved composite flaps. Twenty epigastric flaps were harvested from Lewis rats. Ten flaps were analyzed fresh. Ten flaps were perfused with dimethyl sulfoxide (DMSO)/trehelose cryoprotectant agent (CPA), frozen by controlled cooling to −140°C, and stored for 2 weeks. Flaps were evaluated by factor VIII endothelial staining and MTT tetrazolium salt assay. For the in vivo phase, 30 flaps were harvested. Ten were transplanted fresh to isogenetic recipient animals, ten were perfused with CPA and transplanted, and ten were cryopreserved for 2 weeks, thawed, and transplanted. All cryopreserved samples displayed intact vascular endothelia on factor VIII staining. On MTT analysis, the epithelial viability index for the cryopreserved samples was not significantly different from fresh controls (p = 0.12). All freshly transplanted flaps (10/10) were viable at 60 days. Nine of ten flaps in the perfused/transplanted group were viable at 60 days. Survival of cryopreserved/transplanted flaps ranged from 5 to 60 days. The skin and vascular endothelial components of composite tissue flaps appear to retain their viability after cryopreservation. The in vivo studies demonstrate that the long-term survival of cryopreserved composite tissue transplants is feasible and support an indirect injury, rather than direct injury from freezing or cryoprotectant agents, as the mechanism of flap loss

    Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers

    No full text
    Introduction: Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). Methods: To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. Results: Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 x 10(-4)). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 x 10(-5), P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df P = 0.007; rs1292011 2df P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 x 10(-5)) and there was marginal evidence of association with ER- negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049). Conclusions: The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carrier
    corecore