95 research outputs found
Recommended from our members
The neural basis of centre-surround interactions in visual motion processing
Perception of a moving visual stimulus can be suppressed or enhanced by surrounding context in adjacent parts of the visual field. We studied the neural processes underlying such contextual modulation with fMRI. We selected motion selective regions of interest (ROI) in the occipital and parietal lobes with sufficiently well defined topography to preclude direct activation by the surround. BOLD signal in the ROIs was suppressed when surround motion direction matched central stimulus direction, and increased when it was opposite. With the exception of hMT+/V5, inserting a gap between the stimulus and the surround abolished surround modulation. This dissociation between hMT+/V5 and other motion selective regions prompted us to ask whether motion perception is closely linked to processing in hMT+/V5, or reflects the net activity across all motion selective cortex. The motion aftereffect (MAE) provided a measure of motion perception, and the same stimulus configurations that were used in the fMRI experiments served as adapters. Using a linear model, we found that the MAE was predicted more accurately by the BOLD signal in hMT+/V5 than it was by the BOLD signal in other motion selective regions. However, a substantial improvement in prediction accuracy could be achieved by using the net activity across all motion selective cortex as a predictor, suggesting the overall conclusion that visual motion perception depends upon the integration of activity across different areas of visual cortex
Recommended from our members
The effect of flavanol rich cocoa on cerebral perfusion in older adults during conscious resting state : a placebo controlled, crossover, acute trial
Rationale: There has recently been increasing interest in the potential of flavanols, plant derived compounds found in foods such as fruit and vegetables, to ameliorate age-related cognitive decline. Research suggests that cocoa flavanols improve memory and learning, possibly as a result of their anti-inflammatory and neuroprotective effects. These effects may be mediated by increased cerebral blood flow (CBF), thus stimulating neuronal function.
Objectives: The present study employed arterial spin labelling (ASL) functional magnetic resonance imaging (FMRI) to explore the effect of a single acute dose of cocoa flavanols on regional CBF.
Methods: CBF was measured pre and post consumption of low (23mg) or high (494mg) 330ml equicaloric flavanol drinks matched for caffeine, theobromine, taste and appearance according to a randomised counterbalanced crossover double-blind design in eight males and ten females, aged 50-65 years. Changes in perfusion from pre to post consumption were calculated as a function of each drink.
Results: Significant increases in regional perfusion across the brain were observed following consumption of the high flavanol drink relative to the low flavanol drink, particularly in the anterior cingulate cortex (ACC) and the central opercular cortex of the parietal lobe.
Conclusions: Consumption of cocoa flavanol improves regional cerebral perfusion in older adults. This provides evidence for a possible acute mechanism by which cocoa flavanols are associated with benefits for cognitive performance
Cosmological Magnetic Fields from Primordial Helicity
Primordial magnetic fields may account for all or part of the fields observed
in galaxies. We consider the evolution of the magnetic fields created by
pseudoscalar effects in the early universe. Such processes can create
force-free fields of maximal helicity; we show that for such a field magnetic
energy inverse cascades to larger scales than it would have solely by flux
freezing and cosmic expansion. For fields generated at the electroweak phase
transition, we find that the predicted wavelength today can in principle be as
large as 10 kpc, and the field strength can be as large as 10^{-10} G.Comment: 13 page
Cosmological Magnetic Fields from Primordial Helical Seeds
Most early Universe scenarios predict negligible magnetic fields on
cosmological scales if they are unprocessed during subsequent expansion of the
Universe. We present a new numerical treatment of the evolution of primordial
fields and apply it to weakly helical seeds as they occur in certain early
Universe scenarios. We find that initial helicities not much larger than the
baryon to photon number can lead to fields of about 10^{-13} Gauss with
coherence scales slightly below a kilo-parsec today.Comment: 4 revtex pages, 2 postscript figures include
Inverse cascade in decaying 3D magnetohydrodynamic turbulence
We perform direct numerical simulations of three-dimensional freely decaying
magnetohydrodynamic (MHD) turbulence. For helical magnetic fields an inverse
cascade effect is observed in which power is transfered from smaller scales to
larger scales. The magnetic field reaches a scaling regime with self-similar
evolution, and power law behavior at high wavenumbers. We also find power law
decay in the magnetic and kinematic energies, and power law growth in the
characteristic length scale of the magnetic field.Comment: 6 pages, 5 figures, minor changes to match published versio
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
Grain Surface Models and Data for Astrochemistry
AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of âŒ25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
The measurement of commitment to work
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43493/1/11111_2004_Article_BF00972537.pd
Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV
Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7ââfbâ1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale
A História da Alimentação: balizas historiogråficas
Os M. pretenderam traçar um quadro da HistĂłria da Alimentação, nĂŁo como um novo ramo epistemolĂłgico da disciplina, mas como um campo em desenvolvimento de prĂĄticas e atividades especializadas, incluindo pesquisa, formação, publicaçÔes, associaçÔes, encontros acadĂȘmicos, etc. Um breve relato das condiçÔes em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biolĂłgica, a econĂŽmica, a social, a cultural e a filosĂłfica!, assim como da identificação das contribuiçÔes mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histĂłrica, foi ela organizada segundo critĂ©rios morfolĂłgicos. A seguir, alguns tĂłpicos importantes mereceram tratamento Ă parte: a fome, o alimento e o domĂnio religioso, as descobertas europĂ©ias e a difusĂŁo mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rĂĄpido balanço crĂtico da historiografia brasileira sobre o tema
- âŠ