54 research outputs found

    Detection of anomalous microwave emission in the Perseus molecular cloud with the COSMOSOMAS experiment

    Full text link
    We present direct evidence for anomalous microwave emission in the Perseus molecular cloud, which shows a clear rising spectrum from 11 to 17 GHz in the data of the COSMOSOMAS experiment. By extending the frequency coverage using WMAP maps convolved with the COSMOSOMAS scanning pattern we reveal a peak flux density of 42 (+/-) 4 Jy at 22 GHz integrated over an extended area of 1.65 x 1.0 deg centered on RA = 55.4 (+/-) 0.1 deg and Dec = 31.8 (+/-) 0.1 deg (J2000). The flux density that we measure at this frequency is nearly an order of magnitude higher than can be explained in terms of normal galactic emission processes (synchrotron, free-free and thermal dust). An extended IRAS dust feature G159.6-18.5 is found near this position and no bright unresolved source which could be an ultracompact HII region or gigahertz peaked source could be found. An adequate fit for the spectral density distribution can be achieved from 10 to 50 GHz by including a very significant contribution from electric dipole emission from small spinning dust grains.Comment: 5 pages, 2 postscript figures, accepted ApJ Let

    Observations of the Cosmic Microwave Background and Galactic Foregrounds at 12-17 GHz with the COSMOSOMAS Experiment

    Full text link
    (Abridged) We present the analysis of the first 18 months of data obtained with the COSMOSOMAS experiment at the Teide Observatory (Tenerife). Three maps have been obtained at 12.7, 14.7 and 16.3 GHz covering 9000 square degrees each with a resolution of ~1 degree and with sensitivities 49, 59 and 115 muK per beam respectively. These data in conjuction with the WMAP first year maps have revealed that the Cosmic Microwave Background (CMB) is the dominant astronomical signal at high galatic latitude in the three COSMOSOMAS channels with an average amplitude of 29.7+/- 1.0 \muK (68% c.l. not including calibration errors). This value is in agreement with the predicted CMB signal in the COSMOSOMAS maps using the best fit Lambda-CDM model to the WMAP power spectrum. Cross-correlation of COSMOSOMAS data with the DIRBE map at 100 \mu m shows the existence of a common signal with amplitude 7.4+/- 1.1, 7.5+/- 1.1, and 6.5+/-2.3 muK in the 12.7, 14.7 and 16.3 GHz COSMOSOMAS maps at |b|>30^\deg. Using the WMAP data we find this DIRBE correlated signal rises from high to low frequencies flattening below ~20 GHz. At higher galactic latitudes the average amplitude of the correlated signal with the DIRBE maps decreases slightly. The frequency behaviour of the COSMOSOMAS/WMAP correlated signal with DIRBE is not compatible with the expected tendency for thermal dust. A study of the H-alpha emission maps do not support free-free as a major contributor to that signal. Our results provide evidence of a new galactic foreground with properties compatible with those predicted by the spinning dust models.Comment: 11 pages, 21 figures. Submitted to MNRAS. For paper with figures at full resolution, see http://www.iac.es/project/cmb/cosmosomas

    Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis

    Full text link
    We present new full-sky temperature maps in five frequency bands from 23 to 94 GHz, based on the first three years of the WMAP sky survey. The new maps, which are consistent with the first-year maps and more sensitive, incorporate improvements in data processing made possible by the additional years of data and by a more complete analysis of the polarization signal. These include refinements in the gain calibration and beam response models. We employ two forms of multi-frequency analysis to separate astrophysical foreground signals from the CMB, each of which improves on our first-year analyses. First, we form an improved 'Internal Linear Combination' map, based solely on WMAP data, by adding a bias correction step and by quantifying residual uncertainties in the resulting map. Second, we fit and subtract new spatial templates that trace Galactic emission; in particular, we now use low-frequency WMAP data to trace synchrotron emission. The WMAP point source catalog is updated to include 115 new sources. We derive the angular power spectrum of the temperature anisotropy using a hybrid approach that combines a maximum likelihood estimate at low l (large angular scales) with a quadratic cross-power estimate for l>30. Our best estimate of the CMB power spectrum is derived by averaging cross-power spectra from 153 statistically independent channel pairs. The combined spectrum is cosmic variance limited to l=400, and the signal-to-noise ratio per l-mode exceeds unity up to l=850. The first two acoustic peaks are seen at l=220.8 +- 0.7 and l=530.9 +- 3.8, respectively, while the first two troughs are seen at l=412.4 +- 1.9 and l=675.1 +- 11.1, respectively. The rise to the third peak is unambiguous; when the WMAP data are combined with higher resolution CMB measurements, the existence of a third acoustic peak is well established.Comment: 116 pgs, 24 figs. Accepted version of the 3-year paper as posted to http://lambda.gsfc.nasa.gov/product/map/dr2/map_bibliography.cfm in January 200

    Dry Needling for Spine Related Disorders: a Scoping Review

    Get PDF
    Introduction/Background: The depth and breadth of research on dry needling (DN) has not been evaluated specifically for symptomatic spine related disorders (SRD) from myofascial trigger points (TrP), disc, nerve and articular structures not due to serious pathologies. Current literature appears to support DN for treatment of TrP. Goals of this review include identifying research published on DN treatment for SRD, sites of treatment and outcomes studied. Methods: A scoping review was conducted following Levac et al.’s five part methodological framework to determine the current state of the literature regarding DN for patients with SRD. Results: Initial and secondary search strategies yielded 55 studies in the cervical (C) region (71.43%) and 22 in the thoracolumbar-pelvic (TLP) region (28.57%). Most were randomized controlled trials (60% in C, 45.45% in TLP) and clinical trials (18.18% in C, 22.78% in TLP). The most commonly treated condition was TrP for both the C and TLP regions. In the C region, DN was provided to 23 different muscles, with the trapezius as treatment site in 41.88% of studies. DN was applied to 31 different structures in the TLP region. In the C region, there was one treatment session in 23 studies (41.82%) and 2–6 treatments in 25 (45.45%%). For the TLP region, one DN treatment was provided in 8 of the 22 total studies (36.36%) and 2–6 in 9 (40.9%). The majority of experimental designs had DN as the sole intervention. For both C and TLP regions, visual analogue scale, pressure pain threshold and range of motion were the most common outcomes. Conclusion: For SRD, DN was primarily applied to myofascial structures for pain or TrP diagnoses. Many outcomes were improved regardless of diagnosis or treatment parameters. Most studies applied just one treatment which may not reflect common clinical practice. Further research is warranted to determine optimal treatment duration and frequency. Most studies looked at DN as the sole intervention. It is unclear whether DN alone or in addition to other treatment procedures would provide superior outcomes. Functional outcome tools best suited to tracking the outcomes of DN for SRD should be explored.https://doi.org/10.1186/s12998-020-00310-

    Deep-sequencing reveals broad subtype-specific HCV resistance mutations associated with treatment failure

    Get PDF
    A percentage of hepatitis C virus (HCV)-infected patients fail direct acting antiviral (DAA)-based treatment regimens, often because of drug resistance-associated substitutions (RAS). The aim of this study was to characterize the resistance profile of a large cohort of patients failing DAA-based treatments, and investigate the relationship between HCV subtype and failure, as an aid to optimizing management of these patients. A new, standardized HCV-RAS testing protocol based on deep sequencing was designed and applied to 220 previously subtyped samples from patients failing DAA treatment, collected in 39 Spanish hospitals. The majority had received DAA-based interferon (IFN) a-free regimens; 79% had failed sofosbuvir-containing therapy. Genomic regions encoding the nonstructural protein (NS) 3, NS5A, and NS5B (DAA target regions) were analyzed using subtype-specific primers. Viral subtype distribution was as follows: genotype (G) 1, 62.7%; G3a, 21.4%; G4d, 12.3%; G2, 1.8%; and mixed infections 1.8%. Overall, 88.6% of patients carried at least 1 RAS, and 19% carried RAS at frequencies below 20% in the mutant spectrum. There were no differences in RAS selection between treatments with and without ribavirin. Regardless of the treatment received, each HCV subtype showed specific types of RAS. Of note, no RAS were detected in the target proteins of 18.6% of patients failing treatment, and 30.4% of patients had RAS in proteins that were not targets of the inhibitors they received. HCV patients failing DAA therapy showed a high diversity of RAS. Ribavirin use did not influence the type or number of RAS at failure. The subtype-specific pattern of RAS emergence underscores the importance of accurate HCV subtyping. The frequency of “extra-target” RAS suggests the need for RAS screening in all three DAA target regions

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams. </p

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
    corecore