19 research outputs found

    Successes, challenges and lessons learned: Community-engaged research with South Carolina's Gullah population

    Get PDF
    Engaging communities is highly recommended in the conduct of health research among vulnerable populations. The strength of community-engaged research is well documented and is recognised as a useful approach for eliminating health disparities and improving health equity. In this article, five interdisciplinary teams from the Medical University of South Carolina present their involvement with community-engaged research with a unique population of Gullah African Americans residing in rural South Carolina. Their work has been integrated with the nine established principles of community-engaged research: establishing clear goals, becoming knowledgeable about the community, establishing relationships, developing community self-determination, partnering with the community, maintaining respect, mobilising community assets, releasing control, and maintaining community collaboration. In partnership with a Citizen Advisory Committee, developed at the inception of the first community-engaged research project, the academic researchers have been able to build on relationships and trust with this population to sustain partnerships and to meet major research objectives over a 20-year period. Challenges observed include structural inequality, organisational and cultural issues, and lack of resources for building sustainable research infrastructure. Lessons learned during this process include the necessity for clearly articulated and shared goals, knowledge about the community culture, and embedding the cultural context within research approaches. Keywords: Engaged health research, vulnerable populations, longterm collaboration, South Carolina 'Gullah' communitie

    Effectiveness of technology-assisted case management in low income adults with type 2 diabetes (TACM-DM): study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An estimated 1 in 3 American adults will have diabetes by the year 2050. Nationally, South Carolina ranks 10<sup>th </sup>in cases of diagnosed diabetes compared to other states. In adults, type 2 diabetes (T2DM) accounts for approximately 90-95% of all diagnosed cases of diabetes. Clinically, provider and health system factors account for < 10% of the variance in major diabetes outcomes including hemoglobin A1c (HbA1c), lipid control, and resource use. Use of telemonitoring systems offer new opportunities to support patients with T2DM while waiting to be seen by their health care providers at actual office visits. A variety of interventions testing the efficacy of telemedicine interventions have been conducted, but the outcomes have yielded equivocal results, emphasizing the shortage of controlled, randomized trials in this area. This study provides a unique opportunity to address this gap in the literature by optimizing two strategies that have been shown to improve glycemic control, while simultaneously implementing clinical outcomes measures, using a sufficient sample size, and offering health care delivery to rural, underserved and low income communities with T2DM who are seen at Federally Qualified Health Centers (FQHCs) in coastal South Carolina.</p> <p>Methods</p> <p>We describe a four-year prospective, randomized clinical trial, which will test the effectiveness of technology-assisted case management in low income rural adults with T2DM. Two-hundred (200) male and female participants, 18 years of age or older and with an HbA1c ≥ 8%, will be randomized into one of two groups: (1) an intervention arm employing the innovative FORA system coupled with nurse case management or (2) a usual care group. Participants will be followed for 6-months to ascertain the effect of the interventions on glycemic control. Our primary hypothesis is that among indigent, rural adult patients with T2DM treated in FQHC's, participants randomized to the technology-assisted case management intervention will have significantly greater reduction in HbA1c at 6 months of follow-up compared to usual care.</p> <p>Discussion</p> <p>Results from this study will provide important insight into the effectiveness of technology-assisted case management intervention (TACM) for optimizing diabetes care in indigent, rural adult patients with T2DM treated in FQHC's.</p> <p>Trial Registration</p> <p>National Institutes of Health Clinical Trials Registry (<url>http://ClinicalTrials.gov</url> identifier# <a href="http://www.clinicaltrials.gov/ct2/show/NCT01373489">NCT01373489</a></p

    Gene-Centric Meta-Analysis of Lipid Traits in African, East Asian and Hispanic Populations

    Get PDF
    Meta-analyses of European populations has successfully identified genetic variants in over 100 loci associated with lipid levels, but our knowledge in other ethnicities remains limited. To address this, we performed dense genotyping of ∼2,000 candidate genes in 7,657 African Americans, 1,315 Hispanics and 841 East Asians, using the IBC array, a custom ∼50,000 SNP genotyping array. Meta-analyses confirmed 16 lipid loci previously established in European populations at genome-wide significance level, and found multiple independent association signals within these lipid loci. Initial discovery and in silico follow-up in 7,000 additional African American samples, confirmed two novel loci: rs5030359 within ICAM1 is associated with total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (p=8.8×107andp=1.5×106(p = 8.8×10^{−7} and p = 1.5×10^{−6} respectively) and a nonsense mutation rs3211938 within CD36 is associated with high-density lipoprotein cholesterol (HDL-C) levels (p=13.5×1012)(p = 13.5×10^{−12}). The rs3211938-G allele, which is nearly absent in European and Asian populations, has been previously found to be associated with CD36 deficiency and shows a signature of selection in Africans and African Americans. Finally, we have evaluated the effect of SNPs established in European populations on lipid levels in multi-ethnic populations and show that most known lipid association signals span across ethnicities. However, differences between populations, especially differences in allele frequency, can be leveraged to identify novel signals, as shown by the discovery of ICAM1 and CD36 in the current report

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways
    corecore