12 research outputs found
Multiphoton Quantum Optics and Quantum State Engineering
We present a review of theoretical and experimental aspects of multiphoton
quantum optics. Multiphoton processes occur and are important for many aspects
of matter-radiation interactions that include the efficient ionization of atoms
and molecules, and, more generally, atomic transition mechanisms;
system-environment couplings and dissipative quantum dynamics; laser physics,
optical parametric processes, and interferometry. A single review cannot
account for all aspects of such an enormously vast subject. Here we choose to
concentrate our attention on parametric processes in nonlinear media, with
special emphasis on the engineering of nonclassical states of photons and
atoms. We present a detailed analysis of the methods and techniques for the
production of genuinely quantum multiphoton processes in nonlinear media, and
the corresponding models of multiphoton effective interactions. We review
existing proposals for the classification, engineering, and manipulation of
nonclassical states, including Fock states, macroscopic superposition states,
and multiphoton generalized coherent states. We introduce and discuss the
structure of canonical multiphoton quantum optics and the associated one- and
two-mode canonical multiphoton squeezed states. This framework provides a
consistent multiphoton generalization of two-photon quantum optics and a
consistent Hamiltonian description of multiphoton processes associated to
higher-order nonlinearities. Finally, we discuss very recent advances that by
combining linear and nonlinear optical devices allow to realize multiphoton
entangled states of the electromnagnetic field, that are relevant for
applications to efficient quantum computation, quantum teleportation, and
related problems in quantum communication and information.Comment: 198 pages, 36 eps figure
TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton
AbstractTranscription activator-like (TAL) effectors from Xanthomonas citri subsp. malvacearum (Xcm) are essential for bacterial blight of cotton (BBC). Here, by combining transcriptome profiling with TAL effector-binding element (EBE) prediction, we show that GhSWEET10, encoding a functional sucrose transporter, is induced by Avrb6, a TAL effector determining Xcm pathogenicity. Activation of GhSWEET10 by designer TAL effectors (dTALEs) restores virulence of Xcm avrb6 deletion strains, whereas silencing of GhSWEET10 compromises cotton susceptibility to infections. A BBC-resistant line carrying an unknown recessive b6 gene bears the same EBE as the susceptible line, but Avrb6-mediated induction of GhSWEET10 is reduced, suggesting a unique mechanism underlying b6-mediated resistance. We show via an extensive survey of GhSWEET transcriptional responsiveness to different Xcm field isolates that additional GhSWEETs may also be involved in BBC. These findings advance our understanding of the disease and resistance in cotton and may facilitate the development cotton with improved resistance to BBC.</jats:p
Lineage tracing: technology tool for exploring the development, regeneration, and disease of the digestive system
AbstractLineage tracing is the most widely used technique to track the migration, proliferation, and differentiation of specific cells in vivo. The currently available gene-targeting technologies have been developing for decades to study organogenesis, tissue injury repairing, and tumor progression by tracing the fates of individual cells. Recently, lineage tracing has expanded the platforms available for disease model establishment, drug screening, cell plasticity research, and personalized medicine development in a molecular and cellular biology perspective. Lineage tracing provides new views for exploring digestive organ development and regeneration and techniques for digestive disease causes and progression. This review focuses on the lineage tracing technology and its application in digestive diseases.</jats:p
Liver Buds and Liver Organoids: New Tools for Liver Development, Disease and Medical Application
Predicting Non-Alcoholic Fatty Liver Disease Progression and Immune Deregulations by Specific Gene Expression Patterns
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide with rising rates in parallel to obesity, type 2 diabetes, and metabolic syndrome. NAFLD includes pathologies ranging from simple steatosis (NAFL) to non-alcoholic steatohepatitis and cirrhosis (NASH), which may eventually develop into hepatocellular carcinoma (HCC). Mechanically, lipids accumulation and insulin resistance act as the first hit, inflammation and fibrosis serve as the second hit. Currently, the diagnosis of NAFLD mainly depends on pathology examination and medical imaging, whereas proper gene signature classifiers are necessary for the evaluation of disease status. Here, we developed three signature classifiers to distinguish different NAFLD disease states (NAFL and NASH). Moreover, we found that B cells, DCs, and MAIT cells are key deregulated immune cells in NAFLD, which are associated with NAFLD and NAFLD-HCC progression. Meanwhile, AKR1B10 and SPP1 are closely related to the above three immune cell infiltrations and immunosuppressive cytokines expressions in NAFLD and NAFLD-HCC. Subsequently, we screened out AKR1B10 and SPP1 sensitive molecules TGX-221, which may provide a possible therapy for NAFLD and NAFLD-HCC.</jats:p
