6 research outputs found

    Structure of multiphoton quantum optics. II. Bipartite systems, physical processes, and heterodyne squeezed states

    Full text link
    Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper ``Structure of multiphoton quantum optics. I. Canonical formalism and homodyne squeezed states'', we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing non degenerate and degenerate multiphoton processes. We determine the coherent states associated to the canonical transformations, which generalize the non degenerate two--photon squeezed states. Such heterodyne multiphoton squeezed are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non Gaussian, highly non classical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two--mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.Comment: 16 pages, 23 figure

    Multiphoton Quantum Optics and Quantum State Engineering

    Full text link
    We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromnagnetic field, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.Comment: 198 pages, 36 eps figure

    Mathematical model of an off-grid hybrid solar and wind power generating system

    Get PDF
    The dynamics of an off-grid power generating system, coupled to a storage unit and to household appliances, is described by means of an analytic hydrodynamic analog. Following this analogy, by noticing that the efflux rate from a leaking bucket is described, in terms of the liquid content, by Torricelli’s formula, we denote as “Torricelli’s smart consumer” a user being able to calibrate its energy consumption rate with respect to the energy level in the storage unit as if the hydrodynamic model would strictly apply. Simple solutions to the nonlinear dynamic problem associated to this type of smart consumer are found and generalization to other types of smart consumers are sought

    Remote control of induced dopaminergic neurons in parkinsonian rats

    No full text
    Direct lineage reprogramming through genetic-based strategies enables the conversion of differentiated somatic cells into functional neurons and distinct neuronal subtypes. Induced dopaminergic (iDA) neurons can be generated by direct conversion of skin fibroblasts; however, their in vivo phenotypic and functional properties remain incompletely understood, leaving their impact on Parkinson's disease (PD) cell therapy and modeling uncertain. Here, we determined that iDA neurons retain a transgene-independent stable phenotype in culture and in animal models. Furthermore, transplanted iDA neurons functionally integrated into host neuronal tissue, exhibiting electrically excitable membranes, synaptic currents, dopamine release, and substantial reduction of motor symptoms in a PD animal model. Neuronal cell replacement approaches will benefit from a system that allows the activity of transplanted neurons to be controlled remotely and enables modulation depending on the physiological needs of the recipient; therefore, we adapted a DREADD (designer receptor exclusively activated by designer drug) technology for remote and real-time control of grafted iDA neuronal activity in living animals. Remote DREADD-dependent iDA neuron activation markedly enhanced the beneficial effects in transplanted PD animals. These data suggest that iDA neurons have therapeutic potential as a cell replacement approach for PD and highlight the applicability of pharmacogenetics for enhancing cellular signaling in reprogrammed cell-based approaches
    corecore