3,353 research outputs found
Carrier-mediated magnetoelectricity in complex oxide heterostructures
While tremendous success has been achieved to date in creating both single
phase and composite magnetoelectric materials, the quintessential
electric-field control of magnetism remains elusive. In this work, we
demonstrate a linear magnetoelectric effect which arises from a novel
carrier-mediated mechanism, and is a universal feature of the interface between
a dielectric and a spin-polarized metal. Using first-principles density
functional calculations, we illustrate this effect at the SrRuO/SrTiO
interface and describe its origin. To formally quantify the magnetic response
of such an interface to an applied electric field, we introduce and define the
concept of spin capacitance. In addition to its magnetoelectric and spin
capacitive behavior, the interface displays a spatial coexistence of magnetism
and dielectric polarization suggesting a route to a new type of interfacial
multiferroic
Evanescent light-matter Interactions in Atomic Cladding Wave Guides
Alkali vapors, and in particular rubidium, are being used extensively in
several important fields of research such as slow and stored light non-linear
optics3 and quantum computation. Additionally, the technology of alkali vapors
plays a major role in realizing myriad industrial applications including for
example atomic clocks magentometers8 and optical frequency stabilization.
Lately, there is a growing effort towards miniaturizing traditional
centimeter-size alkali vapor cells. Owing to the significant reduction in
device dimensions, light matter interactions are greatly enhanced, enabling new
functionalities due to the low power threshold needed for non-linear
interactions. Here, taking advantage of the mature Complimentary
Metal-Oxide-Semiconductor (CMOS) compatible platform of silicon photonics, we
construct an efficient and flexible platform for tailored light vapor
interactions on a chip. Specifically, we demonstrate light matter interactions
in an atomic cladding wave guide (ACWG), consisting of CMOS compatible silicon
nitride nano wave-guide core with a Rubidium (Rb) vapor cladding. We observe
the highly efficient interaction of the electromagnetic guided mode with the
thermal Rb cladding. The nature of such interactions is explained by a model
which predicts the transmission spectrum of the system taking into account
Doppler and transit time broadening. We show, that due to the high confinement
of the optical mode (with a mode area of 0.3{\lambda}2), the Rb absorption
saturates at powers in the nW regime.Comment: 10 Pages 4 Figures. 1 Supplementar
Nuclear receptors in vascular biology
Nuclear receptors sense a wide range of steroids and hormones (estrogens, progesterone, androgens, glucocorticoid, and mineralocorticoid), vitamins (A and D), lipid metabolites, carbohydrates, and xenobiotics. In response to these diverse but critically important mediators, nuclear receptors regulate the homeostatic control of lipids, carbohydrate, cholesterol, and xenobiotic drug metabolism, inflammation, cell differentiation and development, including vascular development. The nuclear receptor family is one of the most important groups of signaling molecules in the body and as such represent some of the most important established and emerging clinical and therapeutic targets. This review will highlight some of the recent trends in nuclear receptor biology related to vascular biology
HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer
Introduction: Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial.
Methods: HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in-situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro.
Results: Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, p<0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, p<0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (p=0.004), but not in HER2-positive/ESR1-negative tumors.
Conclusions: Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group
Calcium Homeostasis in Myogenic Differentiation Factor 1 (MyoD)-Transformed, Virally-Transduced, Skin-Derived Equine Myotubes
Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1) mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance) are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1) transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells’ calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans
Blue-Green Color Tunable Solution Processable Organolead Chloride-Bromide Mixed Halide Perovskites for Optoelectronic Applications.
Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425-570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1-x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically with composition. The films possess remarkably sharp band edges and a clean bandgap, with a single optically active phase. These chloride-bromide perovskites can potentially be used in optoelectronic devices like solar cells and light emitting diodes (LEDs). Here we demonstrate high color-purity, tunable LEDs with narrow emission full width at half maxima (FWHM) and low turn on voltages using thin-films of these perovskite materials, including a blue CH3NH3PbCl3 perovskite LED with a narrow emission FWHM of 5 nm.We acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC) and the Winton Programme (Cambridge) for the Physics of Sustainability. Support from the Deutsche Forschungsgemeinschaft (NIM Excellence Cluster) is gratefully acknowledged. A.S. acknowledges the funding and support from the Indo-UK APEX project. F.D. acknowledges funding and support from a Herchel Smith fellowship. M.D.V. acknowledges funding and support from the ERC-StG 337739-HIENA. A.S. thanks Dr. D. Di for the insightful discussions. P. D. gratefully acknowledges support from the European Union in the form of a Marie Curie Intra-European fellowship.This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/acs.nanolett.5b0236
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Meson-Meson Scattering in the Quark Model: Spin Dependence and Exotic Channels
We apply a quark interchange model to spin-dependent and exotic meson-meson
scattering. The model includes the complete set of standard quark model forces,
including OGE spin-orbit and tensor and scalar confinement spin-orbit.
Scattering amplitudes derived assuming SHO and Coulomb plus linear plus
hyperfine meson wavefunctions are compared. In I=2 pi pi we find approximate
agreement with the S-wave phase shift from threshold to 1.5 GeV, where we
predict an extremum that is supported by the data. Near threshold we find rapid
energy dependence that may reconcile theoretical estimates of small scattering
lengths with experimental indications of larger ones based on extrapolation of
measurements at moderate kpi^2. In PsV scattering we find that the quark-quark
L*S and T forces map into L*S and T meson-meson interactions, and the P-wave
L*S force is large. Finally we consider scattering in J^PC-exotic channels, and
note that some of the Deck effect mechanisms suggested as possible nonresonant
origins of the pi_1(1400) signal are not viable in this model.Comment: 51 pages, 10 figures, uses epsf.sty epsfig.st
- …
