1,340 research outputs found

    Size-dependent melting: Numerical calculations of the phonon spectrum

    Full text link
    In order to clarify the relationship between the phonon spectra of nanoparticles and their melting temperature, we studied in detail the size-dependent low energy vibration modes. A minimum model with atoms on a lattice and harmonic potentials for neighboring atoms is used to reveal a general behavior. By calculating the phonon spectra for a series of nanoparticles of two lattice types in different sizes, we found that density of low energy modes increases as the size of nanoparticles decreases, and this density increasing causes decreasing of melting temperature. Size-dependent behavior of the phonon spectra accounts for typical properties of surface-premelting and irregular melting temperature on fine scales. These results show that our minimum model captures main physics of nanoparticles. Therefore, more physical characteristics for nanoparticles of certain types can be given by phonons and microscopic potential models.Comment: 5 pages, 5 figure

    Entropic Upper Bound on Gravitational Binding Energy

    Get PDF
    We prove that the gravitational binding energy {\Omega} of a self gravitating system described by a mass density distribution {\rho}(x) admits an upper bound B[{\rho}(x)] given by a simple function of an appropriate, non-additive Tsallis' power-law entropic functional Sq evaluated on the density {\rho}. The density distributions that saturate the entropic bound have the form of isotropic q-Gaussian distributions. These maximizer distributions correspond to the Plummer density profile, well known in astrophysics. A heuristic scaling argument is advanced suggesting that the entropic bound B[{\rho}(x)] is unique, in the sense that it is unlikely that exhaustive entropic upper bounds not based on the alluded Sq entropic measure exit. The present findings provide a new link between the physics of self gravitating systems, on the one hand, and the statistical formalism associated with non-additive, power-law entropic measures, on the other hand

    The ethics of digital well-being: a multidisciplinary perspective

    Get PDF
    This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation

    Background matching in the brown shrimp Crangon crangon : adaptive camouflage and behavioural-plasticity

    Get PDF
    A combination of burrowing behaviour and very efficient background matching makes the brown shrimp Crangon crangon almost invisible to potential predators and preys. This raises questions on how shrimp succeed in concealing themselves in the heterogeneous and dynamic estuarine habitats they inhabit and what type of environmental variables and behavioural factors affect their colour change abilities. Using a series of behavioural experiments, we show that the brown shrimp is capable of repeated fast colour adaptations (20% change in dark pigment cover within one hour) and that its background matching ability is mainly influenced by illumination and sediment colour. Novel insights are provided on the occurrence of non-adaptive (possibly stress) responses to background changes after long-time exposure to a constant background colour or during unfavourable conditions for burying. Shrimp showed high levels of intra- and inter-individual variation, demonstrating a complex balance between behavioural-plasticity and environmental adaptation. As such, the study of crustacean colour changes represents a valuable opportunity to investigate colour adaptations in dynamic habitats and can help us to identify the mayor environmental and behavioural factors influencing the evolution of animal background matching

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    PREDIVAC: CD4+T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity

    Get PDF
    Background: CD4+ T-cell epitopes play a crucial role in eliciting vigorous protective immune responses during peptide (epitope)-based vaccination. The prediction of these epitopes focuses on the peptide binding process by MHC class II proteins. The ability to account for MHC class II polymorphism is critical for epitope-based vaccine design tools, as different allelic variants can have different peptide repertoires. In addition, the specificity of CD4+ T-cells is often directed to a very limited set of immunodominant peptides in pathogen proteins. The ability to predict what epitopes are most likely to dominate an immune response remains a challenge

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO

    Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity : a review

    Get PDF
    Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control
    corecore