192 research outputs found
Reconstruction methods for acoustic particle detection in the deep sea using clusters of hydrophones
This article focuses on techniques for acoustic noise reduction, signal
filters and source reconstruction. For noise reduction, bandpass filters and
cross correlations are found to be efficient and fast ways to improve the
signal to noise ratio and identify a possible neutrino-induced acoustic signal.
The reconstruction of the position of an acoustic point source in the sea is
performed by using small-volume clusters of hydrophones (about 1 cubic meter)
for direction reconstruction by a beamforming algorithm. The directional
information from a number of such clusters allows for position reconstruction.
The algorithms for data filtering, direction and position reconstruction are
explained and demonstrated using simulated data.Comment: 7 pages, 13 figure
Generalized stacking fault energetics and dislocation properties: compact vs. spread unit dislocation structures in TiAl and CuAu
We present a general scheme for analyzing the structure and mobility of
dislocations based on solutions of the Peierls-Nabarro model with a two
component displacement field and restoring forces determined from the ab-initio
generalized stacking fault energetics (ie., the so-called -surface).
The approach is used to investigate dislocations in L1 TiAl and CuAu;
predicted differences in the unit dislocation properties are explicitly related
with features of the -surface geometry. A unified description of
compact, spread and split dislocation cores is provided with an important
characteristic "dissociation path" revealed by this highly tractable scheme.Comment: 7 two columns pages, 2 eps figures. Phys. Rev. B. accepted November
199
Structure and Strength of Dislocation Junctions: An Atomic Level Analysis
The quasicontinuum method is used to simulate three-dimensional
Lomer-Cottrell junctions both in the absence and in the presence of an applied
stress. The simulations show that this type of junction is destroyed by an
unzipping mechanism in which the dislocations that form the junction are
gradually pulled apart along the junction segment. The calculated critical
stress needed for breaking the junction is comparable to that predicted by line
tension models. The simulations also demonstrate a strong influence of the
initial dislocation line directions on the breaking mechanism, an effect that
is neglected in the macroscopic treatment of the hardening effect of junctions.Comment: 4 pages, 3 figure
Optical turbulence vertical distribution with standard and high resolution at Mt. Graham
A characterization of the optical turbulence vertical distribution (Cn2
profiles) and all the main integrated astroclimatic parameters derived from the
Cn2 and the wind speed profiles above the site of the Large Binocular Telescope
(Mt. Graham, Arizona, US) is presented. The statistic includes measurements
related to 43 nights done with a Generalized Scidar (GS) used in standard
configuration with a vertical resolution Delta(H)~1 km on the whole 20 km and
with the new technique (HVR-GS) in the first kilometer. The latter achieves a
resolution Delta(H)~20-30 m in this region of the atmosphere. Measurements done
in different periods of the year permit us to provide a seasonal variation
analysis of the Cn2. A discretized distribution of Cn2 useful for the Ground
Layer Adaptive Optics (GLAO) simulations is provided and a specific analysis
for the LBT Laser Guide Star system ARGOS (running in GLAO configuration) case
is done including the calculation of the 'gray zones' for J, H and K bands. Mt.
Graham confirms to be an excellent site with median values of the seeing
without dome contribution epsilon = 0.72", the isoplanatic angle theta0 = 2.5"
and the wavefront coherence time tau0= 4.8 msec. We find that the optical
turbulence vertical distribution decreases in a much sharper way than what has
been believed so far in proximity of the ground above astronomical sites. We
find that 50% of the whole turbulence develops in the first 80+/-15 m from the
ground. We finally prove that the error in the normalization of the
scintillation that has been recently put in evidence in the principle of the GS
technique, affects these measurements with an absolutely negligible quantity
(0.04").Comment: 11 figures. MNRAS, accepte
Generalized stacking fault energy surfaces and dislocation properties of aluminum
We have employed the semidiscrete variational generalized Peierls-Nabarro
model to study the dislocation core properties of aluminum. The generalized
stacking fault energy surfaces entering the model are calculated by using
first-principles Density Functional Theory (DFT) with pseudopotentials and the
embedded atom method (EAM). Various core properties, including the core width,
splitting behavior, energetics and Peierls stress for different dislocations
have been investigated. The correlation between the core energetics and
dislocation character has been explored. Our results reveal a simple
relationship between the Peierls stress and the ratio between the core width
and atomic spacing. The dependence of the core properties on the two methods
for calculating the total energy (DFT vs. EAM) has been examined. The EAM can
give gross trends for various dislocation properties but fails to predict the
finer core structures, which in turn can affect the Peierls stress
significantly (about one order of magnitude).Comment: 25 pages, 12 figure
Performance of the First ANTARES Detector Line
In this paper we report on the data recorded with the first Antares detector
line. The line was deployed on the 14th of February 2006 and was connected to
the readout two weeks later. Environmental data for one and a half years of
running are shown. Measurements of atmospheric muons from data taken from
selected runs during the first six months of operation are presented.
Performance figures in terms of time residuals and angular resolution are
given. Finally the angular distribution of atmospheric muons is presented and
from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure
Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea
An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site
of the ANTARES neutrino telescope near Toulon, France, thus providing a unique
opportunity to compare high-resolution acoustic and optical observations
between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward
vertical currents of magnitudes up to 0.03 m s-1 in late winter and early
spring 2006. In the same period, observations were made of enhanced levels of
acoustic reflection, interpreted as suspended particles including zooplankton,
by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These
observations coincided with high light levels detected by the telescope,
interpreted as increased bioluminescence. During winter 2006 deep dense-water
formation occurred in the Ligurian subbasin, thus providing a possible
explanation for these observations. However, the 10-20 days quasi-periodic
episodes of high levels of acoustic reflection, light and large vertical
currents continuing into the summer are not direct evidence of this process. It
is hypothesized that the main process allowing for suspended material to be
moved vertically later in the year is local advection, linked with topographic
boundary current instabilities along the rim of the 'Northern Current'.Comment: 30 pages, 7 figure
Performance of the front-end electronics of the ANTARES neutrino telescope
ANTARES is a high-energy neutrino telescope installed in the Mediterranean
Sea at a depth of 2475 m. It consists of a three-dimensional array of optical
modules, each containing a large photomultiplier tube. A total of 2700
front-end ASICs named Analogue Ring Samplers (ARS) process the phototube
signals, measure their arrival time, amplitude and shape as well as perform
monitoring and calibration tasks. The ARS chip processes the analogue signals
from the optical modules and converts information into digital data. All the
information is transmitted to shore through further multiplexing electronics
and an optical link. This paper describes the performance of the ARS chip;
results from the functionality and characterization tests in the laboratory are
summarized and the long-term performance in the apparatus is illustrated.Comment: 20 pages, 22 figures, published in Nuclear Instruments and Methods
- …