We have employed the semidiscrete variational generalized Peierls-Nabarro
model to study the dislocation core properties of aluminum. The generalized
stacking fault energy surfaces entering the model are calculated by using
first-principles Density Functional Theory (DFT) with pseudopotentials and the
embedded atom method (EAM). Various core properties, including the core width,
splitting behavior, energetics and Peierls stress for different dislocations
have been investigated. The correlation between the core energetics and
dislocation character has been explored. Our results reveal a simple
relationship between the Peierls stress and the ratio between the core width
and atomic spacing. The dependence of the core properties on the two methods
for calculating the total energy (DFT vs. EAM) has been examined. The EAM can
give gross trends for various dislocation properties but fails to predict the
finer core structures, which in turn can affect the Peierls stress
significantly (about one order of magnitude).Comment: 25 pages, 12 figure