91 research outputs found

    Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts

    Full text link
    [EN] The potential of oxide-supported rhodium single atom catalysts (SACs) for heterogeneous hydroformylation was investigated both theoretically and experimentally. Using high-level domain-based local-pair natural orbital coupled cluster singles doubles with perturbative triples contribution (DLPNO-CCSD(T)) calculations, both stability and catalytic activity were investigated for Rh single atoms on different oxide surfaces. Atomically dispersed, supported Rh catalysts were synthesized on MgO and CeO2. While the CeO2-supported rhodium catalyst is found to be highly active, this is not the case for MgO, most likely due to increased confinement, as determined by extended X-ray absorption fine structure spectroscopy (EXAFS), that diminishes the reactivity of Rh complexes on MgO. This agrees well with our computational investigation, where we find that rhodium carbonyl hydride complexes on flat oxide surfaces such as CeO2(111) have catalytic activities comparable to those of molecular complexes. For a step edge on a MgO(301) surface, however, calculations show a significantly reduced catalytic activity. At the same time, calculations predict that stronger adsorption at the higher coordinated adsorption site leads to a more stable catalyst. Keeping the balance between stability and activity appears to be the main challenge for oxide supported Rh hydroformylation catalysts. In addition to the chemical bonding between rhodium complex and support, the confinement experienced by the active site plays an important role for the catalytic activity.X-ray absorption experiments were performed at the ALBA Synchrotron Light Source (Spain), experiment 2019023278. Beamline scientists L. Simonelli and C. Marini are gratefully acknowledged for their contribution to beam setup. E. Andrés, E. Martínez-Monje, I. López, and M. García-Farpón (ITQ) are acknowledged for their assistance with XAS data acquisition. J. Ternedien (MPI-KOFO) is acknowledged for the performance of XRD experiments. N. Pfänder (MPI-CEC) is acknowledged for his contribution to STEM characterization. The authors acknowledge support by the state of Baden-Württemberg through bwHPC (bwUnicluster and JUSTUS, RV bw17D01). The authors gratefully acknowledge support by the GRK 2450. Financial support from the Helmholtz Association is also gratefully acknowledged. The experimental work received funding from the Max Planck Society and the Spanish Ministry of Science, Innovation and Universities (projects SEV-2016-0683 and RTI2018-096399-A-I00). B.B.S. acknowledges the Alexander von Humboldt Foundation for a postdoctoral scholarship.Amsler, J.; Sarma, BB.; Agostini, G.; Prieto González, G.; Plessow, P.; Studt, F. (2020). Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts. Journal of the American Chemical Society. 142(11):5087-5096. https://doi.org/10.1021/jacs.9b12171S5087509614211Franke, R., Selent, D., & Börner, A. (2012). Applied Hydroformylation. Chemical Reviews, 112(11), 5675-5732. doi:10.1021/cr3001803Serna, P., Yardimci, D., Kistler, J. D., & Gates, B. C. (2014). Formation of supported rhodium clusters from mononuclear rhodium complexes controlled by the support and ligands on rhodium. Phys. Chem. Chem. Phys., 16(3), 1262-1270. doi:10.1039/c3cp53057dGuan, E., & Gates, B. C. (2017). Stable Rhodium Pair Sites on MgO: Influence of Ligands and Rhodium Nuclearity on Catalysis of Ethylene Hydrogenation and H–D Exchange in the Reaction of H2 with D2. ACS Catalysis, 8(1), 482-487. doi:10.1021/acscatal.7b03549Dossi, C., Fusi, A., Garlaschelli, L., Roberto, D., Ugo, R., & Psaro, R. (1991). Ethylene hydroformylation with the silica-supported K2[Rh12(CO)30] cluster: evidence for vapor-phase cluster catalysis. Catalysis Letters, 11(3-6), 335-339. doi:10.1007/bf00764325Ehresmann, J. O., Kletnieks, P. W., Liang, A., Bhirud, V. A., Bagatchenko, O. P., Lee, E. J., … Haw, J. F. (2006). Evidence from NMR and EXAFS Studies of a Dynamically Uniform Mononuclear Single-Site Zeolite-Supported Rhodium Catalyst. Angewandte Chemie International Edition, 45(4), 574-576. doi:10.1002/anie.200502864Sun, Q., Dai, Z., Liu, X., Sheng, N., Deng, F., Meng, X., & Xiao, F.-S. (2015). Highly Efficient Heterogeneous Hydroformylation over Rh-Metalated Porous Organic Polymers: Synergistic Effect of High Ligand Concentration and Flexible Framework. Journal of the American Chemical Society, 137(15), 5204-5209. doi:10.1021/jacs.5b02122De Munck, N. A., Verbruggen, M. W., & Scholten, J. J. F. (1981). Gas phase hydroformylation of propylene with porous resin anchored rhodium complexes part I. Methods of catalyst preparation and characterization. Journal of Molecular Catalysis, 10(3), 313-330. doi:10.1016/0304-5102(81)85052-3Lang, R., Li, T., Matsumura, D., Miao, S., Ren, Y., Cui, Y.-T., … Zhang, T. (2016). Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3. Angewandte Chemie International Edition, 55(52), 16054-16058. doi:10.1002/anie.201607885Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., & Zhang, T. (2013). Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 46(8), 1740-1748. doi:10.1021/ar300361mPaolucci, C., Khurana, I., Parekh, A. A., Li, S., Shih, A. J., Li, H., … Gounder, R. (2017). Dynamic multinuclear sites formed by mobilized copper ions in NO x selective catalytic reduction. Science, 357(6354), 898-903. doi:10.1126/science.aan5630Jangjou, Y., Do, Q., Gu, Y., Lim, L.-G., Sun, H., Wang, D., … Epling, W. S. (2018). Nature of Cu Active Centers in Cu-SSZ-13 and Their Responses to SO2 Exposure. ACS Catalysis, 8(2), 1325-1337. doi:10.1021/acscatal.7b03095Wang, L., Zhang, W., Wang, S., Gao, Z., Luo, Z., Wang, X., … Zeng, J. (2016). Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nature Communications, 7(1). doi:10.1038/ncomms14036Li, T., Chen, F., Lang, R., Wang, H., Su, Y., Qiao, B., … Zhang, T. (2020). Styrene Hydroformylation with In Situ Hydrogen: Regioselectivity Control by Coupling with the Low‐Temperature Water–Gas Shift Reaction. Angewandte Chemie International Edition, 59(19), 7430-7434. doi:10.1002/anie.202000998Heck, R. F., & Breslow, D. S. (1961). The Reaction of Cobalt Hydrotetracarbonyl with Olefins. Journal of the American Chemical Society, 83(19), 4023-4027. doi:10.1021/ja01480a017Van Leeuwen, P. W. N. M., & Claver, C. (Eds.). (2002). Rhodium Catalyzed Hydroformylation. Catalysis by Metal Complexes. doi:10.1007/0-306-46947-2Van Rooy, A. (1996). Rhodium-catalysed hydroformylation of branched 1-alkenes; bulky phosphite vs. triphenylphosphine as modifying ligand. Journal of Organometallic Chemistry, 507(1-2), 69-73. doi:10.1016/0022-328x(95)05748-eSparta, M., Børve, K. J., & Jensen, V. R. (2007). Activity of Rhodium-Catalyzed Hydroformylation:  Added Insight and Predictions from Theory. Journal of the American Chemical Society, 129(27), 8487-8499. doi:10.1021/ja070395nGellrich, U., Himmel, D., Meuwly, M., & Breit, B. (2013). Realistic Energy Surfaces for Real-World Systems: An IMOMO CCSD(T):DFT Scheme for Rhodium-Catalyzed Hydroformylation with the 6-DPPon Ligand. Chemistry - A European Journal, 19(48), 16272-16281. doi:10.1002/chem.201302132Kumar, M., Chaudhari, R. V., Subramaniam, B., & Jackson, T. A. (2014). Ligand Effects on the Regioselectivity of Rhodium-Catalyzed Hydroformylation: Density Functional Calculations Illuminate the Role of Long-Range Noncovalent Interactions. Organometallics, 33(16), 4183-4191. doi:10.1021/om500196gJiao, Y., Torne, M. S., Gracia, J., Niemantsverdriet, J. W. (Hans), & van Leeuwen, P. W. N. M. (2017). Ligand effects in rhodium-catalyzed hydroformylation with bisphosphines: steric or electronic? Catalysis Science & Technology, 7(6), 1404-1414. doi:10.1039/c6cy01990kSchmidt, S., Deglmann, P., & Hofmann, P. (2014). Density Functional Investigations of the Rh-Catalyzed Hydroformylation of 1,3-Butadiene with Bisphosphite Ligands. ACS Catalysis, 4(10), 3593-3604. doi:10.1021/cs500718vJacobs, I., de Bruin, B., & Reek, J. N. H. (2015). Comparison of the Full Catalytic Cycle of Hydroformylation Mediated by Mono- and Bis-Ligated Triphenylphosphine-Rhodium Complexes by Using DFT Calculations. ChemCatChem, 7(11), 1708-1718. doi:10.1002/cctc.201500087Kégl, T. (2015). Computational aspects of hydroformylation. RSC Advances, 5(6), 4304-4327. doi:10.1039/c4ra13121eWodrich, M. D., Busch, M., & Corminboeuf, C. (2016). Accessing and predicting the kinetic profiles of homogeneous catalysts from volcano plots. Chemical Science, 7(9), 5723-5735. doi:10.1039/c6sc01660jLiu, J., Bunes, B. R., Zang, L., & Wang, C. (2017). Supported single-atom catalysts: synthesis, characterization, properties, and applications. Environmental Chemistry Letters, 16(2), 477-505. doi:10.1007/s10311-017-0679-2Kwon, Y., Kim, T. Y., Kwon, G., Yi, J., & Lee, H. (2017). Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion. Journal of the American Chemical Society, 139(48), 17694-17699. doi:10.1021/jacs.7b11010Sarma, B. B., Kim, J., Amsler, J., Agostini, G., Weidenthaler, C., Pfänder, N., … Prieto, G. (2020). One‐Pot Cooperation of Single‐Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization‐Hydrosilylation Process. Angewandte Chemie International Edition, 59(14), 5806-5815. doi:10.1002/anie.201915255Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., … Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8), 634-641. doi:10.1038/nchem.1095Sun, S., Zhang, G., Gauquelin, N., Chen, N., Zhou, J., Yang, S., … Sun, X. (2013). Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports, 3(1). doi:10.1038/srep01775Abbet, S., Sanchez, A., Heiz, U., Schneider, W.-D., Ferrari, A. M., Pacchioni, G., & Rösch, N. (2000). Acetylene Cyclotrimerization on Supported Size-Selected Pdn Clusters (1 ≤ n ≤ 30): One Atom Is Enough! Journal of the American Chemical Society, 122(14), 3453-3457. doi:10.1021/ja9922476Lin, J., Wang, A., Qiao, B., Liu, X., Yang, X., Wang, X., … Zhang, T. (2013). Remarkable Performance of Ir1/FeOx Single-Atom Catalyst in Water Gas Shift Reaction. Journal of the American Chemical Society, 135(41), 15314-15317. doi:10.1021/ja408574mGu, X.-K., Qiao, B., Huang, C.-Q., Ding, W.-C., Sun, K., Zhan, E., … Li, W.-X. (2014). Supported Single Pt1/Au1 Atoms for Methanol Steam Reforming. ACS Catalysis, 4(11), 3886-3890. doi:10.1021/cs500740uJones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., … Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800Fei, H., Dong, J., Arellano-Jiménez, M. J., Ye, G., Dong Kim, N., Samuel, E. L. G., … Tour, J. M. (2015). Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nature Communications, 6(1). doi:10.1038/ncomms9668Wei, H., Liu, X., Wang, A., Zhang, L., Qiao, B., Yang, X., … Zhang, T. (2014). FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 5(1). doi:10.1038/ncomms6634Wang, X., van Bokhoven, J. A., & Palagin, D. (2020). Atomically dispersed platinum on low index and stepped ceria surfaces: phase diagrams and stability analysis. Physical Chemistry Chemical Physics, 22(1), 28-38. doi:10.1039/c9cp04973hNeitzel, A., Figueroba, A., Lykhach, Y., Skála, T., Vorokhta, M., Tsud, N., … Libuda, J. (2016). Atomically Dispersed Pd, Ni, and Pt Species in Ceria-Based Catalysts: Principal Differences in Stability and Reactivity. The Journal of Physical Chemistry C, 120(18), 9852-9862. doi:10.1021/acs.jpcc.6b02264Tang, Y., Asokan, C., Xu, M., Graham, G. W., Pan, X., Christopher, P., … Sautet, P. (2019). Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nature Communications, 10(1). doi:10.1038/s41467-019-12461-6DeRita, L., Resasco, J., Dai, S., Boubnov, A., Thang, H. V., Hoffman, A. S., … Christopher, P. (2019). Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nature Materials, 18(7), 746-751. doi:10.1038/s41563-019-0349-9Su, Y.-Q., Wang, Y., Liu, J.-X., Filot, I. A. W., Alexopoulos, K., Zhang, L., … Hensen, E. J. M. (2019). Theoretical Approach To Predict the Stability of Supported Single-Atom Catalysts. ACS Catalysis, 9(4), 3289-3297. doi:10.1021/acscatal.9b00252O’Connor, N. J., Jonayat, A. S. M., Janik, M. J., & Senftle, T. P. (2018). Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nature Catalysis, 1(7), 531-539. doi:10.1038/s41929-018-0094-5Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Anisimov, V. I., Zaanen, J., & Andersen, O. K. (1991). Band theory and Mott insulators: HubbardUinstead of StonerI. Physical Review B, 44(3), 943-954. doi:10.1103/physrevb.44.943Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., & Sutton, A. P. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide:  An LSDA+U study. Physical Review B, 57(3), 1505-1509. doi:10.1103/physrevb.57.1505Song, Y.-L., Yin, L.-L., Zhang, J., Hu, P., Gong, X.-Q., & Lu, G. (2013). A DFT+U study of CO oxidation at CeO2(110) and (111) surfaces with oxygen vacancies. Surface Science, 618, 140-147. doi:10.1016/j.susc.2013.09.001Nolan, M., Grigoleit, S., Sayle, D. C., Parker, S. C., & Watson, G. W. (2005). Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surface Science, 576(1-3), 217-229. doi:10.1016/j.susc.2004.12.016Huang, M., & Fabris, S. (2008). CO Adsorption and Oxidation on Ceria Surfaces from DFT+U Calculations. The Journal of Physical Chemistry C, 112(23), 8643-8648. doi:10.1021/jp709898rMonkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188Plessow, P. N. (2018). Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans. Journal of Chemical Theory and Computation, 14(2), 981-990. doi:10.1021/acs.jctc.7b01070Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-xStephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, 98(45), 11623-11627. doi:10.1021/j100096a001TURBOMOLE, V.7.1 2016, a development of Karlsruhe Institute of Technology, Karlsruhe, 1989–2019, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com. Turbomole GmbH: 2016.Weigend, F. (2006). Accurate Coulomb-fitting basis sets for H to Rn. Physical Chemistry Chemical Physics, 8(9), 1057. doi:10.1039/b515623hWeigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541aNeese, F. (2011). The ORCA program system. WIREs Computational Molecular Science, 2(1), 73-78. doi:10.1002/wcms.81Neese, F. (2017). Software update: the ORCA program system, version 4.0. WIREs Computational Molecular Science, 8(1). doi:10.1002/wcms.1327Ekström, U., Visscher, L., Bast, R., Thorvaldsen, A. J., & Ruud, K. (2010). Arbitrary-Order Density Functional Response Theory from Automatic Differentiation. Journal of Chemical Theory and Computation, 6(7), 1971-1980. doi:10.1021/ct100117sAndrae, D., H�u�ermann, U., Dolg, M., Stoll, H., & Preu�, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77(2), 123-141. doi:10.1007/bf01114537Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B, 113(18), 6378-6396. doi:10.1021/jp810292nRiplinger, C., Pinski, P., Becker, U., Valeev, E. F., & Neese, F. (2016). Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. The Journal of Chemical Physics, 144(2), 024109. doi:10.1063/1.4939030Ugliengo, P., & Damin, A. (2002). Are dispersive forces relevant for CO adsorption on the MgO(001) surface? Chemical Physics Letters, 366(5-6), 683-690. doi:10.1016/s0009-2614(02)01657-3Alessio, M., Usvyat, D., & Sauer, J. (2018). Chemically Accurate Adsorption Energies: CO and H2O on the MgO(001) Surface. Journal of Chemical Theory and Computation, 15(2), 1329-1344. doi:10.1021/acs.jctc.8b01122Utamapanya, S., Klabunde, K. J., & Schlup, J. R. (1991). Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chemistry of Materials, 3(1), 175-181. doi:10.1021/cm00013a036Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719Connett, J. E. (1972). Chemical equilibria 5. Measurement of equilibrium constants for the dehydrogenation of propanol by a vapour flow technique. The Journal of Chemical Thermodynamics, 4(2), 233-237. doi:10.1016/0021-9614(72)90061-4Wodrich, M. D., Busch, M., & Corminboeuf, C. (2018). Expedited Screening of Active and Regioselective Catalysts for the Hydroformylation Reaction. Helvetica Chimica Acta, 101(9), e1800107. doi:10.1002/hlca.201800107Goula, G., Botzolaki, G., Osatiashtiani, A., Parlett, C. M. A., Kyriakou, G., Lambert, R. M., & Yentekakis, I. V. (2019). Oxidative Thermal Sintering and Redispersion of Rh Nanoparticles on Supports with High Oxygen Ion Lability. Catalysts, 9(6), 541. doi:10.3390/catal9060541Lazzaroni, R., Raffaelli, A., Settambolo, R., Bertozzi, S., & Vitulli, G. (1989). Regioselectivity in the rhodium-catalyzed hydroformylation of styrene as a function of reaction temperature and gas pressure. Journal of Molecular Catalysis, 50(1), 1-9. doi:10.1016/0304-5102(89)80104-xYu, S., Chie, Y., Guan, Z., Zou, Y., Li, W., & Zhang, X. (2008). Highly Regioselective Hydroformylation of Styrene and Its Derivatives Catalyzed by Rh Complex with Tetraphosphorus Ligands. Organic Letters, 11(1), 241-244. doi:10.1021/ol802479

    Metal-Specific Reactivity in Single-Atom Catalysts: CO Oxidation on 4d and 5d Transition Metals Atomically Dispersed on MgO

    Get PDF
    Understanding and tuning the catalytic properties of metals atomically dispersed on oxides are major stepping-stones toward a rational development of single-atom catalysts (SACs). Beyond individual showcase studies, the design and synthesis of structurally regular series of SACs opens the door to systematic experimental investigations of performance as a function of metal identity. Herein, a series of single-atom catalysts based on various 4d (Ru, Rh, Pd) and 5d (Ir, Pt) transition metals has been synthesized on a common MgO carrier. Complementary experimental (X-ray absorption spectroscopy) and theoretical (Density Functional Theory) studies reveal that, regardless of the metal identity, metal cations occupy preferably octahedral coordination MgO lattice positions under step-edges, hence highly confined by the oxide support. Upon exposure to O2-lean CO oxidation conditions, FTIR spectroscopy indicates the partial deconfinement of the monatomic metal centers driven by CO at precatalysis temperatures, followed by the development of surface carbonate species under steady-state conditions. These findings are supported by DFT calculations, which show the driving force and final structure for the surface metal protrusion to be metal-dependent, but point to an equivalent octahedral-coordinated M4+ carbonate species as the resting state in all cases. Experimentally, apparent reaction activation energies in the range of 96 ± 19 kJ/mol are determined, with Pt leading to the lowest energy barrier. The results indicate that, for monatomic sites in SACs, differences in CO oxidation reactivity enforceable via metal selection are of lower magnitude than those evidenced previously through the mechanistic involvement of adjacent redox centers on the oxide carrier, suggesting that tuning of the oxide surface chemistry is as relevant as the selection of the supported metal

    Overlapping and dissociable brain activations for fluid intelligence and executive functions

    Get PDF
    Cognitive enhancement interventions aimed at boosting human fluid intelligence (gf) have targeted executive functions (EFs), such as updating, inhibition, and switching, in the context of transfer-inducing cognitive training. However, even though the link between EFs and gf has been demonstrated at the psychometric level, their neurofunctional overlap has not been quantitatively investigated. Identifying whether and how EFs and gf might share neural activation patterns could provide important insights into the overall hierarchical organization of human higher-order cognition, as well as suggest specific targets for interventions aimed at maximizing cognitive transfer. We present the results of a quantitative meta-analysis of the available fMRI and PET literature on EFs and gf in humans, showing the similarity between gf and (i) the overall global EF network, as well as (ii) specific maps for updating, switching, and inhibition. Results highlight a higher degree of similarity between gf and updating (80% overlap) compared with gf and inhibition (34%), and gf and switching (17%). Moreover, three brain regions activated for both gf and each of the three EFs also were identified, located in the left middle frontal gyrus, left inferior parietal lobule, and anterior cingulate cortex. Finally, resting-state functional connectivity analysis on two independent fMRI datasets showed the preferential behavioural correlation and anatomical overlap between updating and gf. These findings confirm a close link between gf and EFs, with implications for brain stimulation and cognitive training interventions

    Probing Active Sites on Pd/Pt Alloy Nanoparticles by CO Adsorption

    Get PDF
    We studied the adsorption of CO on Pd/Pt nanoparticles (NPs) with varying compositions using polarization-dependent Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) and theoretical calculations (DFT). We prepared PtPd alloy NPs via physical vapor codeposition on α-Al2_2O3_3(0001) supports. Our morphological and structural characterization by scanning electron microscopy and grazing incidence X-ray diffraction revealed well-defined, epitaxial NPs. We used CO as a probe molecule to identify the particles’ surface active sites. Polarization-dependent FT-IRRAS enabled us to distinguish CO adsorption on top and side facets of the NPs. The role of the Pd/Pt alloy ratio on CO adsorption was investigated by comparing the experimental CO stretching band requency for different alloy arrangements to the results for pure Pd and Pt NPs. Moreover, we studied the influence of hydrogen adsorption on the NP surface composition. We determined the dependence of the IR bands on the local atomic arrangement via DFT calculations, revealing that both bulk alloy composition and neighboring atoms influence the wavenumber of the bands

    Single Alloy Nanoparticle X-Ray Imaging during a Catalytic Reaction

    Get PDF
    The imaging of active nanoparticles represents a milestone in decoding heterogeneous catalysts dynamics. We report the facet resolved, surface strain state of a single PtRh alloy nanoparticle on SrTiO3 determined by coherent x-ray diffraction imaging under catalytic reaction conditions. Density functional theory calculations allow us to correlate the facet surface strain state to its reaction environment dependent chemical composition. We find that the initially Pt terminated nanoparticle surface gets Rh enriched under CO oxidation reaction conditions. The local composition is facet orientation dependent and the Rh enrichment is non-reversible under subsequent CO reduction. Tracking facet resolved strain and composition under operando conditions is crucial for a rational design of more efficient heterogeneous catalysts with tailored activity, selectivity and lifetime.Comment: 15 pages, 4 figures, 32 reference

    Modulating fluid intelligence performance through combined cognitive training and brain stimulation

    Get PDF
    It is debated whether cognitive training of specific executive functions leads to far transfer effects, such as improvements in fluid intelligence (Gf). Within this context, transcranial direct current stimulation and recently also novel protocols such as transcranial random noise and alternating current stimulation are being investigated with regards to their ability to enhance cognitive training outcomes. We compared the effects of four different transcranial electrical brain stimulation protocols in combination with nine daily computerized training sessions on Gf. 82 participants were randomly assigned to receive transcranial direct current stimulation (tDCS), random noise stimulation (tRNS), multifocal alternating current stimulation at 40 Hz (mftACS), or multifocal tDCS (mftDCS) in combination with an adaptive and synergistic executive function (EF) training, or to a no-contact control group. EF training consisted of gamified tasks drawing on isolated as well as integrated executive functions (working memory, inhibition, cognitive flexibility). Transfer was assessed with a combined measure of Gf including three established tests (Bochumer Matrizentest - BOMAT, Raven's Advanced Progressive Matrices - RAPM, and Sandia Matrices). We found significant improvements in Gf for the tDCS, mftDCS, and tRNS groups when compared with the no-contact group. In contrast, the mftACS group did not improve significantly and showed a similar pattern as the no-contact group. Mediation analyses indicated that the improvement in Gf was mediated through game progression in the mftDCS and tRNS group. Electrical brain stimulation in combination with sustained EF training can lead to transfer effects in Gf, which are mediated by training progression

    Ginseng and ginkgo biloba effects on cognition as modulated by cardiovascular reactivity: a randomised trial

    Get PDF
    Background There is some evidence to suggest that ginseng and Ginkgo biloba can improve cognitive performance, however, very little is known about the mechanisms associated with such improvement. Here, we tested whether cardiovascular reactivity to a task is associated with cognitive improvement. Methodology/Principal findings Using a double-blind, placebo controlled, crossover design, participants (N = 24) received two doses of Panax Ginseng (500, 1000 mg) or Ginkgo Biloba (120, 240 mg) (N = 24), and underwent a series of cognitive tests while systolic, diastolic, and heart rate readings were taken. Ginkgo Biloba improved aspects of executive functioning (Stroop and Berg tasks) in females but not in males. Ginseng had no effect on cognition. Ginkgo biloba in females reversed the initial (i.e. placebo) increase in cardiovascular reactivity (systolic and diastolic readings increased compared to baseline) to cognitive tasks. This effect (reversal) was most notable after those tasks (Stroop and Iowa) that elicited the greatest cardiovascular reactivity during placebo. In males, although ginkgo also decreased cardiovascular readings, it did so from an initial (placebo) blunted response (i.e. decrease or no change from baseline) to cognitive tasks. Ginseng, on the contrary, increased cardiovascular readings compared to placebo. Conclusions/Significance These results suggest that cardiovascular reactivity may be a mechanism by which ginkgo but not ginseng, in females is associated with certain forms of cognitive improvement

    GRDC-Caravan: extending Caravan with data from the Global Runoff Data Centre

    Get PDF
    Large-sample datasets are essential in hydrological science to support modelling studies and advance process understanding. Here, we present the GRDC-Caravan dataset, an extension to the large-sample hydrology project Caravan. Caravan is a community initiative which aims to combine large-sample hydrology datasets of meteorological forcing data, catchment attributes and discharge data for catchments around the world. The GRDC-Caravan extension is based on a subset of hydrological discharge data and station-based watersheds from the Global Runoff Data Centre (GRDC), which are covered by an open data policy. The GRDC is an international data centre operating under the auspices of the World Meteorological Organization (WMO), which collects quality-controlled river discharge data and associated metadata from the National Meteorological and Hydrological Services (NMHS) of WMO member states. The extension contains discharge data and catchment boundaries from GRDC, which can be released under a permissive license (CC-BY-4.0). In addition, the extension contains meteorological forcing data and catchment attributes from the global datasets ERA5-Land and HydroATLAS in a standardized format. The dataset covers stations from 5356 catchments and 25 countries and spans the years 1950–2023. Compared to the core version of Caravan, the extension takes the total number of Caravan catchments to be 22 372 (of which 1589 catchments are duplicates between the core and extensions). While in the core Caravan dataset mostly stations from North America, central Europe and South America were included, the new extension significantly improves the global coverage of the dataset with new stations across Europe, South America, South Africa, Australia and Aotearoa New Zealand. In addition, the temporal extension of the time series could be significantly increased from 40–70 years. The extension strongly improves the global and temporal coverage of Caravan and represents a valuable dataset for global hydrological and climatological modelling studies. The dataset is released under a CC-BY-4.0 license that allows for redistribution and is publicly available on Zenodo: https://doi.org/10.5281/zenodo.15349031 (Färber et al., 2025).</p

    Sustainable land-use alternatives in tropical rainforests? Evidence from natural and social sciences.

    Get PDF
    The Amazon rainforest, formerly pristine and highly biodiverse, is increasingly under threat from deforestation for cattle grazing, other forms of agriculture, mining and development. To better understand which land management type best serves sustainability aims, we compare soil gas exchange (CO2, CH4, N2O) and soil chemistry for forested land with post-forest land at 13 locations and 29 sites within the state of Amazonas, Brazil. We find that forest soils show distinctively different signals and signatures compared to soils in post-forest land use cases. Crucial answers emerge regarding the limits of system resilience as well as sustainable alternatives to deforestation and current land-use practices. We carry out a socioeconomic evaluation and discuss the likely reasons for inaction and how to overcome them
    corecore