138 research outputs found

    Apoptosis Signal-Regulating Kinase 1 Mediates MPTP Toxicity and Regulates Glial Activation

    Get PDF
    Apoptosis signal-regulating kinase 1 (ASK1), a member of the mitogen-activated protein kinase 3 family, is activated by oxidative stress. The death-signaling pathway mediated by ASK1 is inhibited by DJ-1, which is linked to recessively inherited Parkinson's disease (PD). Considering that DJ-1 deficiency exacerbates the toxicity of the mitochondrial complex I inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we sought to investigate the direct role and mechanism of ASK1 in MPTP-induced dopamine neuron toxicity. In the present study, we found that MPTP administration to wild-type mice activates ASK1 in the midbrain. In ASK1 null mice, MPTP-induced motor impairment was less profound, and striatal dopamine content and nigral dopamine neuron counts were relatively preserved compared to wild-type littermates. Further, microglia and astrocyte activation seen in wild-type mice challenged with MPTP was markedly attenuated in ASK1−/− mice. These data suggest that ASK1 is a key player in MPTP-induced glial activation linking oxidative stress with neuroinflammation, two well recognized pathogenetic factors in PD. These findings demonstrate that ASK1 is an important effector of MPTP-induced toxicity and suggest that inhibiting this kinase is a plausible therapeutic strategy for protecting dopamine neurons in PD

    Development and validation of the Self-Regulation of Eating Behaviour Questionnaire for adults

    Get PDF
    Background Eating self-regulatory capacity can help individuals to cope with the obesogenic environment and achieve, as well as maintain, a healthy weight and diet. At present, there is no comprehensive, reliable and valid questionnaire for assessing this capacity and measuring change in response to self-regulation interventions in adults. This paper reports the development of the Self-regulation of Eating Behaviour Questionnaire (SREBQ) for use in UK adults, and presents evidence for its reliability and construct validity. The development of the SREBQ involved generation of an item pool, followed by two pilot studies (Samples 1 and 2) and a test of the questionnaire’s underlying factor structure (Sample 3). The final version of the SREBQ was then assessed for reliability and construct validity (Sample 4). Results Development of the SREBQ resulted in a 5-item questionnaire. The face validity was satisfactory, as assessed by the pilot studies. The factor structure analysis (Sample 3) suggested that it has a single underlying factor, which was confirmed in a second sample (Sample 4). The SREBQ had strong construct validity, showing a positive correlation with general measures of self-regulation. It was also positively correlated with motivation and behavioural automaticity, and negatively correlated with food responsiveness and emotional over-eating (p < 0.001). It showed good discriminant validity, as it was only weakly associated with satiety responsiveness, food fussiness and slowness in eating. Conclusions The SREBQ is a reliable and valid measure for assessment of eating self-regulatory capacity in the general UK adult population

    Accessibility and implementation in UK services of an effective depression relapse prevention programme - mindfulness-based cognitive therapy (MBCT): ASPIRE study protocol

    Get PDF
    notes: PMCID: PMC4036706types: Journal Article© 2014 Rycroft-Malone et al.; licensee BioMed Central Ltd.Mindfulness-based cognitive therapy (MBCT) is a cost-effective psychosocial prevention programme that helps people with recurrent depression stay well in the long term. It was singled out in the 2009 National Institute for Health and Clinical Excellence (NICE) Depression Guideline as a key priority for implementation. Despite good evidence and guideline recommendations, its roll-out and accessibility across the UK appears to be limited and inequitably distributed. The study aims to describe the current state of MBCT accessibility and implementation across the UK, develop an explanatory framework of what is hindering and facilitating its progress in different areas, and develop an Implementation Plan and related resources to promote better and more equitable availability and use of MBCT within the UK National Health Service.NIHRHS&D

    Glucocorticoid receptor in astrocytes regulates midbrain dopamine neurodegeneration through connexin hemichannel activity

    Get PDF
    The precise contribution of astrocytes in neuroinflammatory process occurring in Parkinson's disease (PD) is not well characterized. In this study, using GR(Cx30CreERT2) mice that are conditionally inactivated for glucocorticoid receptor (GR) in astrocytes, we have examined the actions of astrocytic GR during dopamine neuron (DN) degeneration triggered by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results show significantly augmented DN loss in GR(Cx30CreERT2) mutant mice in substantia nigra (SN) compared to controls. Hypertrophy of microglia but not of astrocytes was greatly enhanced in SN of these astrocytic GR mutants intoxicated with MPTP, indicating heightened microglial reactivity compared to similarly-treated control mice. In the SN of GR astrocyte mutants, specific inflammation-associated transcripts ICAM-1, TNF-alpha and Il-1 beta as well as TNF-alpha protein levels were significantly elevated after MPTP neurotoxicity compared to controls. Interestingly, this paralleled increased connexin hemichannel activity and elevated intracellular calcium levels in astrocytes examined in acute midbrain slices from control and mutant mice treated with MPP+. The increased connexin-43 hemichannel activity was found in vivo in MPTP-intoxicated mice. Importantly, treatment of MPTP-injected GR(Cx30CreERT2) mutant mice with TAT-Gap19 peptide, a specific connexin-43 hemichannel blocker, reverted both DN loss and microglial activation; in wild-type mice there was partial but significant survival effect. In the SN of postmortem PD patients, a significant decrease in the number of astrocytes expressing nuclear GR was observed, suggesting the participation of astrocytic GR deregulation of inflammatory process in PD. Overall, these data provide mechanistic insights into GR-modulated processes in vivo, specifically in astrocytes, that contribute to a pro-inflammatory state and dopamine neurodegeneration in PD pathology

    Effectiveness and cost-effectiveness of an exposure-based return-to-work programme for patients on sick leave due to common mental disorders: design of a cluster-randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To reduce the duration of sick leave and loss of productivity due to common mental disorders (CMDs), we developed a return-to-work programme to be provided by occupational physicians (OPs) based on the principles of exposure in vivo (RTW-E programme). This study evaluates this programme's effectiveness and cost-effectiveness by comparing it with care as usual (CAU). The three research questions we have are: 1) Is an RTW-E programme more effective in reducing the sick leave of employees with common mental disorders, compared with care as usual? 2) Is an RTW-E programme more effective in reducing sick leave for employees with anxiety disorders compared with employees with other common mental disorders? 3) From a societal perspective, is an RTW-E programme cost-effective compared with care as usual?</p> <p>Methods/design</p> <p>This study was designed as a pragmatic cluster-randomized controlled trial with a one-year follow-up and randomization on the level of OPs. We aimed for 60 OPs in order to include 200 patients. Patients in the intervention group received the RTW-E programme. Patients in the control group received care as usual. Eligible patients had been on sick leave due to common mental disorders for at least two weeks and no longer than eight weeks. As primary outcome measures, we calculated the time until full return to work and the duration of sick leave. Secondary outcome measures were time until partial return to work, prevalence rate of sick leave at 3, 6, 9, and 12 months' follow-up, and scores of symptoms of distress, anxiety, depression, somatization, and fatigue; work capacity; perceived working conditions; self-efficacy for return to work; coping behaviour; avoidance behaviour; patient satisfaction; and work adaptations. As process measures, we used indices of compliance with the intervention in the intervention group and employee-supervisor communication in both groups. Economic costs were calculated from a societal perspective. The total costs consisted of the costs of consuming health care, costs of production loss due to sick leave and reduced productivity, and out-of-pocket costs of patients for travelling to their OP.</p> <p>Discussion</p> <p>The results will be published in 2009. The strengths and weaknesses of the study protocol are discussed.</p> <p>Trial registration</p> <p>ISRCTN72643128</p

    The Nitric Oxide-Cyclic GMP Pathway Regulates FoxO and Alters Dopaminergic Neuron Survival in Drosophila

    Get PDF
    Activation of the forkhead box transcription factor FoxO is suggested to be involved in dopaminergic (DA) neurodegeneration in a Drosophila model of Parkinson's disease (PD), in which a PD gene product LRRK2 activates FoxO through phosphorylation. In the current study that combines Drosophila genetics and biochemical analysis, we show that cyclic guanosine monophosphate (cGMP)-dependent kinase II (cGKII) also phosphorylates FoxO at the same residue as LRRK2, and Drosophila orthologues of cGKII and LRRK2, DG2/For and dLRRK, respectively, enhance the neurotoxic activity of FoxO in an additive manner. Biochemical assays using mammalian cGKII and FoxO1 reveal that cGKII enhances the transcriptional activity of FoxO1 through phosphorylation of the FoxO1 S319 site in the same manner as LRRK2. A Drosophila FoxO mutant resistant to phosphorylation by DG2 and dLRRK (dFoxO S259A corresponding to human FoxO1 S319A) suppressed the neurotoxicity and improved motor dysfunction caused by co-expression of FoxO and DG2. Nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) also increased FoxO's activity, whereas the administration of a NOS inhibitor L-NAME suppressed the loss of DA neurons in aged flies co-expressing FoxO and DG2. These results strongly suggest that the NO-FoxO axis contributes to DA neurodegeneration in LRRK2-linked PD

    Loss of ATF2 Function Leads to Cranial Motoneuron Degeneration during Embryonic Mouse Development

    Get PDF
    The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS

    Microglial activation and chronic neurodegeneration

    Get PDF
    Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurode-generative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including tumor necrosis factor-α, nitric oxide, interleukin-1β, and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (e.g., lipopolysaccharide or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss with time. Although the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson’s disease. We review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype

    Adaptive preconditioning in neurological diseases -­ therapeutic insights from proteostatic perturbations

    Get PDF
    International audienceIn neurological disorders, both acute and chronic neural stress can disrupt cellular proteostasis, resulting in the generation of pathological protein. However in most cases, neurons adapt to these proteostatic perturbations by activating a range of cellular protective and repair responses, thus maintaining cell function. These interconnected adaptive mechanisms comprise a 'proteostasis network' and include the unfolded protein response, the ubiquitin proteasome system and autophagy. Interestingly, several recent studies have shown that these adaptive responses can be stimulated by preconditioning treatments, which confer resistance to a subsequent toxic challenge - the phenomenon known as hormesis. In this review we discuss the impact of adaptive stress responses stimulated in diverse human neuropathologies including Parkinson´s disease, Wolfram syndrome, brain ischemia, and brain cancer. Further, we examine how these responses - and the molecular pathways they recruit - might be exploited for therapeutic gai
    corecore