79 research outputs found

    Better supporting workers in ML workplaces

    Get PDF
    This workshop is aimed at bringing together a multidisciplinary group to discuss Machine Learning and its application in the workplace as a practical, everyday work matter. It's our hope this is a step toward helping us design better technology and user experiences to support the accomplishment of that work, while paying attention to workplace context. Despite advancement and investment in Machine Learning (ML) business applications, understanding workers in these work contexts have received little attention. As this category experiences dramatic growth, it's important to better understand the role that workers play, both individually and collaboratively, in a workplace where the output of prediction and machine learning is becoming pervasive. There is a closing window of opportunity to investigate this topic as it proceeds toward ubiquity. CSCW and HCI offer concepts, tools and methodologies to better understand and build for this future

    Defining motility in the Staphylococci

    Get PDF
    The ability of bacteria to move is critical for their survival in diverse environments and multiple ways have evolved to achieve this. Two forms of motility have recently been described for Staphylococcus aureus, an organism previously considered to be non-motile. One form is called spreading, which is a type of sliding motility and the second form involves comet formation, which has many observable characteristics associated with gliding motility. Darting motility has also been observed in Staphylococcus epidermidis. This review describes how motility is defined and how we distinguish between passive and active motility. We discuss the characteristics of the various forms of Staphylococci motility, the molecular mechanisms involved and the potential future research directions

    Neurexins and Neuroligins: Recent Insights from Invertebrates

    Get PDF
    During brain development, each neuron must find and synapse with the correct pre- and postsynaptic partners. The complexity of these connections and the relatively large distances some neurons must send their axons to find the correct partners makes studying brain development one of the most challenging, and yet fascinating disciplines in biology. Furthermore, once the initial connections have been made, the neurons constantly remodel their dendritic and axonal arbours in response to changing demands. Neurexin and neuroligin are two cell adhesion molecules identified as important regulators of this process. The importance of these genes in the development and modulation of synaptic connectivity is emphasised by the observation that mutations in these genes in humans have been associated with cognitive disorders such as Autism spectrum disorders, Tourette syndrome and Schizophrenia. The present review will discuss recent advances in our understanding of the role of these genes in synaptic development and modulation, and in particular, we will focus on recent work in invertebrate models, and how these results relate to studies in mammals

    Analysis of Adhesion Molecules and Basement Membrane Contributions to Synaptic Adhesion at the Drosophila Embryonic NMJ

    Get PDF
    Synapse formation and maintenance crucially underlie brain function in health and disease. Both processes are believed to depend on cell adhesion molecules (CAMs). Many different classes of CAMs localise to synapses, including cadherins, protocadherins, neuroligins, neurexins, integrins, and immunoglobulin adhesion proteins, and further contributions come from the extracellular matrix and its receptors. Most of these factors have been scrutinised by loss-of-function analyses in animal models. However, which adhesion factors establish the essential physical links across synaptic clefts and allow the assembly of synaptic machineries at the contact site in vivo is still unclear. To investigate these key questions, we have used the neuromuscular junction (NMJ) of Drosophila embryos as a genetically amenable model synapse. Our ultrastructural analyses of NMJs lacking different classes of CAMs revealed that loss of all neurexins, all classical cadherins or all glutamate receptors, as well as combinations between these or with a Laminin deficiency, failed to reveal structural phenotypes. These results are compatible with a view that these CAMs might have no structural role at this model synapse. However, we consider it far more likely that they operate in a redundant or well buffered context. We propose a model based on a multi-adaptor principle to explain this phenomenon. Furthermore, we report a new CAM-independent adhesion mechanism that involves the basement membranes (BM) covering neuromuscular terminals. Thus, motorneuronal terminals show strong partial detachment of the junction when BM-to-cell surface attachment is impaired by removing Laminin A, or when BMs lose their structural integrity upon loss of type IV collagens. We conclude that BMs are essential to tie embryonic motorneuronal terminals to the muscle surface, lending CAM-independent structural support to their adhesion. Therefore, future developmental studies of these synaptic junctions in Drosophila need to consider the important contribution made by BM-dependent mechanisms, in addition to CAM-dependent adhesion

    Percepção dos consumidores relativamente à carne de bovino: critérios de escolha a partir de grupos de discussão

    Get PDF
    Nas economias desenvolvidas, a segurança dos alimentos, o bem‑estar animal e o ambiente têm vindo a assumir relevância nas preocupações dos consumidores. Procurámos saber, através da metodologia dos grupos de discussão (focus groups) realizados em duas cidades de Portugal, Lisboa e Porto, as preocupações e perceções dos consumidores relativamente a estes atributos, os quais são essencialmente acreditados. Este conhecimento é fundamental para a aplicação posterior de métodos de preferências declaradas. Foi ainda possível obter, com base em exercícios de seleção entre carnes diferenciadas, e através de um modelo logit, intervalos de preços passíveis de serem utilizados posteriormente na definição de cenários em experiências de escolha (método de preferências declaradas) -----ABSTRACT-----In developed economies, food safety, animal welfare and the environment have become relevant consumers’ concerns. We conducted several focus groups in two Portuguese cities, Lisboa and Porto, in order to get participants perceptions and concerns for these attributes, which are essentially credence attributes. This knowledge is critical for the subsequent application of stated preference methods. It was also possible to estimate, based on exercises of selection among different meats, and through a logit model, price ranges that could be used in the definition of scenarios for choice experiments (stated preference method)info:eu-repo/semantics/publishedVersio

    Future directions for therapeutic strategies in post-ischaemic vascularization: a position paper from European Society of Cardiology Working Group on Atherosclerosis and Vascular Biology

    Get PDF
    Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical success in regulating vascularization illustrates the complexity of the vascularization process, which involves a delicate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end, the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic disease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery methods

    Evolution of microstructure and crystallographic texture during dissimilar friction stir welding of duplex stainless steel to low carbon-manganese structural steel

    Get PDF
    Electron backscattered diffraction (EBSD) was used to analyze the evolution of microstructure and crystallographic texture during friction stir welding of dissimilar type 2205 duplex stainless steel (DSS) to type S275 low carbon-manganese structural steel. The results of microstructural analyses show that the temperature in the center of stirred zone reached temperatures between Ac 1 and Ac 3 during welding, resulting in a minor ferrite-to-austenite phase transformation in the S275 steel, and no changes in the fractions of ferrite and austenite in the DSS. Temperatures in the thermomechanically affected and shoulder-affected zones of both materials, in particular toward the root of the weld, did not exceed the Ac 1 of S275 steel. The shear generated by the friction between the material and the rotating probe occurred in austenitic/ferritic phase field of the S275 and DSS. In the former, the transformed austenite regions of the microstructure were transformed to acicular ferrite, on cooling, while the dual-phase austenitic/ferritic structure of the latter was retained. Studying the development of crystallographic textures with regard to shear flow lines generated by the probe tool showed the dominance of simple shear components across the whole weld in both materials. The ferrite texture in S275 steel was dominated by D 1, D 2, E, E¯ , and F, where the fraction of acicular ferrite formed on cooling showed a negligible deviation from the texture for the ideal shear texture components of bcc metals. The ferrite texture in DSS was dominated by D 1, D 2, I, I¯ , and F, and that of austenite was dominated by the A, A¯ , B, and B¯ of the ideal shear texture components for bcc and fcc metals, respectively. While D 1, D 2, and F components of the ideal shear texture are common between the ferrite in S275 steel and that of dual-phase DSS, the preferential partitioning of strain into the ferrite phase of DSS led to the development of I and I¯ components in DSS, as opposed to E and E¯ in the S275 steel. The formations of fine and ultrafine equiaxed grains were observed in different regions of both materials that are believed to be due to strain-induced continuous dynamic recrystallization (CDRX) in ferrite of both DSS and S275 steel, and discontinuous dynamic recrystallization (DDRX) in austenite phase of DSS
    • …
    corecore