118 research outputs found

    Stand Structure and Productivity of the \u3ci\u3eRhizophora mangle\u3c/i\u3e in Hawaii

    Get PDF
    Since its introduction in the early part of this century, Rhizophora mangle L. has spread extensively through most of the main islands of the Hawaiian Archipelago. We investigated the structural properties and estimated productivity of a R. mangle population at Nuupia Ponds Wildlife Management Area (NPWMA), on windward Oahu, where the mangroves were being controlled due to their propensity to overgrow archaeological sites and the habitat of endangered Hawaiian waterbirds. Mangroves within NPWMA were very dense (\u3e 24,000 trees ha-1) and most were relatively small (only 3.3% of the trees were ≥ 10 cm DBH). Mean basal area, aboveground biomass, and number of seedlings were all high, at 37.2 m z ha ~, 279 t (dry wt) ha-1, and 121 m-2, respectively. The seedling density may be particularly unusual and appears to be due to extremely high rates of propagule production coupled with low rates ot\u27 propagule predation. Stand productivity was estimated by stem growth (allometry), litterfall, and a fight attenuation approach to determining net canopy photosynthetic production. All three methods yielded estimates that are higher than previously reported for R. mangle and comparable with estimates of highly productive Rhizophora spp.-dominated stands in Australia and Asia. The high density, biomass, and productivity of this stand relative to stands within the species\u27 native range may be due to a combination of favorable site conditions, lack of competition from other woody plants, ;rod very low rates of herbivory and propagule predation

    Rate of Spread of Introduced Rhodophytes Kappaphycus alvarezii, Kappaphycus striatum, and Gracilaria salicornia and Their Current Distribution in Kane'ohe Bay, O'ahu Hawai'i

    Get PDF
    Spread of the introduced macroalgae Kappaphycus alvarezii (Doty), Kappaphycus striatum Schmitz, and Graci/aria salicornia C. Ag. was measured on reefs in Kane'ohe Bay, O'ahu, Hawai'i. The red algae Kappaphycus alvarezii and Gracilaria salicornia were introduced to specific sites in Kane'ohe Bay in the 1970s. Since that time their distributions have increased, and the algae have spread through the bay. To assess the current extent of these algae in the bay and determine their rate of spread, we performed surveys with a manta towboard. In addition, abundance of these species was determined by detailed reef transects in the central bay in three habitats: barrier reef, patch reef, and fringing reef. All three species have become well established. These algae were found in all areas of Kane'ohe Bay. Distributions are not uniform within the central bay. Abundance of Kappaphycus spp. was highest on patch reefs in shallow water. Gracilaria salicornia was most abundant on the fringing reef. Kappaphycus alvarezii and K. striatum have spread 6km from their points of introduction in 1974, an average rate of spread of approximately 250 m yet. Gracilaria salicornia has spread over 5 km since its introduction in 1978, an average rate of spread of approximately 280 m yr -1. High abundance of these introduced species appears to be associated with moderate water motion

    Using genetics to inform restoration and predict resilience in declining populations of a keystone marine sponge

    Get PDF
    Genetic tools can have a key role in informing conservation management of declining populations. Genetic diversity is an important determinant of population ftness and resilience, and can require careful management to ensure sufcient variation is present. In addition, population genetics data reveal patterns of connectivity and gene fow between locations, enabling mangers to predict recovery and resilience, identify areas of local adaptation, and generate restoration plans. Here, we demonstrate a conservation genetics approach to inform restoration and management of the loggerhead sponge (Spheciospongia vesparium) in the Florida Keys, USA. This species is a dominant, habitat-forming component of marine ecosystems in the Caribbean region, but in Florida has sufered numerous mass mortality events. We developed microsatellite markers and used them to genotype sponges from 14 locations in Florida and a site each in The Bahamas, Belize and Barbuda. We found that genetic diversity levels were similar across all sites, but inbreeding and bottleneck signatures were present in Florida. Populations are highly structured at the regional scale, whilst within Florida connectivity is present in a weak isolation by distance pattern, coupled with chaotic genetic patchiness. Evidence of a weak barrier to gene fow was found in Florida among sites situated on opposite sides of the islands in the Middle Keys. Loggerhead sponge populations in Florida are vulnerable in the face of mass mortalities due to low connectivity with other areas in the region, as well as distance-limited and unpredictable local connectivity patterns. However, our discovery of Florida’s high genetic diversity increases hope for resilience to future perturbations. These results provide valuable insight for sponge restoration practice in Florida. for sponge restoration practice in Florida

    Exploring Latinidad, Migration Processes, and Immigrant Experiences: Experiences Influencing Latino Health

    Get PDF
    Introduction Over the last few decades, Latino migration to the U.S.has re-shaped the ethnic composition of the country, and influencedthe meaning of “ethnic” and “racial” identity. The purpose of thisqualitative study was to explore the definition and meaning of beingLatino and how this may guide the development of interventions topromote their health. Methods Twenty-six Latino immigrants living in Kansas completeda socio-demographic survey and semi-structured interviews to assessand explore personal immigration experiences and perspectives onthe meaning of being Latino in the U.S. Results Participant reports were grouped into eight themes on Latinoidentity that were organized by geographic origin, family roots/ties,and acculturation. Immigration experiences were described as bothpositive and negative with most participants experiencing discriminationand loneliness, but also reports of improved quality of life.Further, most participants reported a strong sense of Latinidad; thatLatino immigrant communities in the U.S. are interdependent andsupportive of each other. Conclusions The experience of being a member of a minority groupmight contribute to the development of a cohesive sense of Latinoidentity as participants acculturate to the U.S. while preserving asense of attachment to their culture of origin. Future interventionsshould be sensitive to migration experiences as they might influencechanges in health behaviors

    Rapid isolation and characterization of microsatellites in the critically endangered mountain bongo (Tragelaphus eurycerus isaaci)

    Get PDF
    High-throughput sequencing tools promise to revolutionize many aspects of genetic research, e.g. by allowing the identification of functional adaptive genetic variation. However, the expense and expertise required to apply these tools to basic conservation questions is a challenge for applications outside academia, resulting in a so-called ‘conservation genomics gap’ (Shafer et al.2015). The conservation genetics paradigm is that, basic information about inbreeding and gene flow are often critical to inform conservation management of small populations (Ouborg et al.2010). This information is often needed quickly and ideally should be accessible to workers without special expertise in genomics (DeSalle and Amato 2004). While the inferential power of high-throughput sequencing to interrogate the genome is profound, the cost for population analysis is higher (though decreasing) than for traditional neutral markers. Thus, the use of neutral markers is still relevant in conservation applications. However, this assumes that neutral markers have been discovered and characterized for a given species of conservation concern, which is often untrue for nonmodel organisms. Here, we use a fast, cost-efficient, high-throughput sequencing method (Illumina MiSeq) to rapidly identify and characterize microsatellites in the mountain bongo (Tragelaphus eurycerus isaaci), which has a clear and timely conservation imperative but lacks any described neutral markers

    Patterns of Coral Disease across the Hawaiian Archipelago: Relating Disease to Environment

    Get PDF
    In Hawaii, coral reefs occur across a gradient of biological (host abundance), climatic (sea surface temperature anomalies) and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI) to the pristine reefs of the northwestern Hawaiian Islands (NWHI). Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora) with Porites having the highest prevalence. Porites growth anomalies (PorGAs) were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm) was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS) was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral). All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS) we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic). All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing a negative association, but no significant explanatory power was offered for PorTLS

    Impact of neuraminidase inhibitors on influenza A(H1N1)pdm09‐related pneumonia: an individual participant data meta‐analysis

    Get PDF
    BACKGROUND: The impact of neuraminidase inhibitors (NAIs) on influenza‐related pneumonia (IRP) is not established. Our objective was to investigate the association between NAI treatment and IRP incidence and outcomes in patients hospitalised with A(H1N1)pdm09 virus infection. METHODS: A worldwide meta‐analysis of individual participant data from 20 634 hospitalised patients with laboratory‐confirmed A(H1N1)pdm09 (n = 20 021) or clinically diagnosed (n = 613) ‘pandemic influenza’. The primary outcome was radiologically confirmed IRP. Odds ratios (OR) were estimated using generalised linear mixed modelling, adjusting for NAI treatment propensity, antibiotics and corticosteroids. RESULTS: Of 20 634 included participants, 5978 (29·0%) had IRP; conversely, 3349 (16·2%) had confirmed the absence of radiographic pneumonia (the comparator). Early NAI treatment (within 2 days of symptom onset) versus no NAI was not significantly associated with IRP [adj. OR 0·83 (95% CI 0·64–1·06; P = 0·136)]. Among the 5978 patients with IRP, early NAI treatment versus none did not impact on mortality [adj. OR = 0·72 (0·44–1·17; P = 0·180)] or likelihood of requiring ventilatory support [adj. OR = 1·17 (0·71–1·92; P = 0·537)], but early treatment versus later significantly reduced mortality [adj. OR = 0·70 (0·55–0·88; P = 0·003)] and likelihood of requiring ventilatory support [adj. OR = 0·68 (0·54–0·85; P = 0·001)]. CONCLUSIONS: Early NAI treatment of patients hospitalised with A(H1N1)pdm09 virus infection versus no treatment did not reduce the likelihood of IRP. However, in patients who developed IRP, early NAI treatment versus later reduced the likelihood of mortality and needing ventilatory support

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genomic analyses inform on migration events during the peopling of Eurasia.

    Get PDF
    High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.Support was provided by: Estonian Research Infrastructure Roadmap grant no 3.2.0304.11-0312; Australian Research Council Discovery grants (DP110102635 and DP140101405) (D.M.L., M.W. and E.W.); Danish National Research Foundation; the Lundbeck Foundation and KU2016 (E.W.); ERC Starting Investigator grant (FP7 - 261213) (T.K.); Estonian Research Council grant PUT766 (G.C. and M.K.); EU European Regional Development Fund through the Centre of Excellence in Genomics to Estonian Biocentre (R.V.; M.Me. and A.Me.), and Centre of Excellence for Genomics and Translational Medicine Project No. 2014-2020.4.01.15-0012 to EGC of UT (A.Me.) and EBC (M.Me.); Estonian Institutional Research grant IUT24-1 (L.S., M.J., A.K., B.Y., K.T., C.B.M., Le.S., H.Sa., S.L., D.M.B., E.M., R.V., G.H., M.K., G.C., T.K. and M.Me.) and IUT20-60 (A.Me.); French Ministry of Foreign and European Affairs and French ANR grant number ANR-14-CE31-0013-01 (F.-X.R.); Gates Cambridge Trust Funding (E.J.); ICG SB RAS (No. VI.58.1.1) (D.V.L.); Leverhulme Programme grant no. RP2011-R-045 (A.B.M., P.G. and M.G.T.); Ministry of Education and Science of Russia; Project 6.656.2014/K (S.A.F.); NEFREX grant funded by the European Union (People Marie Curie Actions; International Research Staff Exchange Scheme; call FP7-PEOPLE-2012-IRSES-number 318979) (M.Me., G.H. and M.K.); NIH grants 5DP1ES022577 05, 1R01DK104339-01, and 1R01GM113657-01 (S.Tis.); Russian Foundation for Basic Research (grant N 14-06-00180a) (M.G.); Russian Foundation for Basic Research; grant 16-04-00890 (O.B. and E.B); Russian Science Foundation grant 14-14-00827 (O.B.); The Russian Foundation for Basic Research (14-04-00725-a), The Russian Humanitarian Scientific Foundation (13-11-02014) and the Program of the Basic Research of the RAS Presidium “Biological diversity” (E.K.K.); Wellcome Trust and Royal Society grant WT104125AIA & the Bristol Advanced Computing Research Centre (http://www.bris.ac.uk/acrc/) (D.J.L.); Wellcome Trust grant 098051 (Q.A.; C.T.-S. and Y.X.); Wellcome Trust Senior Research Fellowship grant 100719/Z/12/Z (M.G.T.); Young Explorers Grant from the National Geographic Society (8900-11) (C.A.E.); ERC Consolidator Grant 647787 ‘LocalAdaptatio’ (A.Ma.); Program of the RAS Presidium “Basic research for the development of the Russian Arctic” (B.M.); Russian Foundation for Basic Research grant 16-06-00303 (E.B.); a Rutherford Fellowship (RDF-10-MAU-001) from the Royal Society of New Zealand (M.P.C.)
    corecore