167 research outputs found
Accumulation, temporal variation, source apportionment and risk assessment of heavy metals in agricultural soils from the middle reaches of Fenhe River basin, North China
The Fenhe River basin is the main agricultural and industrial developed area in Shanxi province, China. In recent years, agricultural non-point source pollution in the Fenhe River basin intensified, threatening soil quality and safety in the area. Accumulation of eight heavy metals (HMs) including chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) has been detected in soil samples from 50 agricultural sites (0-20 cm) from the middle reaches of the Fenhe River basin. The ecological and human health risk and potential sources of the eight HMs were investigated. In addition, the human health and ecological risks imposed by the possible sources of the eight HMs were quantitatively apportioned. The enrichment factor (EF) values of Cr, Ni, Cu, Pb and Zn were lower than 2, indicating minimal enrichment, while values for As, Cd and Hg were between 2 and 5, exhibiting moderate enrichment. Temporal variation analysis suggested that most HMs in the study area exhibited low concentrations after 2015, except As. The potential ecological risk index was 174.09, indicating low ecological risk. The total hazard index and cancer risk values were 0.395 and 5.35 x 10(-4) for adults and 2.75 and 3.63 x 10(-4) for children, indicating the accepted standard levels were exceeded for non-carcinogenic risk for children and carcinogenic risks for both adults and children. Four potential sources were identified: (1) natural sources, (2) farming activities, (3) coal combustion, and (4) exhaust emissions. Natural sources represented the largest contributor to ecological risk, accounting for 57.42% of the total. Coal combustion was the major contributor to human health risks, accounting for 43.27% and 43.73% of the total non-carcinogenic risk and carcinogenic risk for adults, respectively, and 42.72% and 43.88% for children, respectively
Industrial SO2 pollution and agricultural losses in China: evidence from heavy air polluters
This paper aims to assess the agricultural losses caused by the 2069 state-monitored heavily air polluting enterprises located in 899 Chinese counties. We examine the correlation between per capita number of state-monitored enterprises and other socio-economic indices to show the negative impacts of sulphur dioxide (SO2) industrial air pollution on agricultural development in the regions. Despite these enterprises being the main drivers of economic development in China’s counties, surrounding agricultural land continues to be degraded because of the associated SO2 emissions. The cost of agricultural losses due to pollution is estimated at US$ 1.43 billion, representing 0.66% of the total agricultural value added of the 899 Chinese counties. The findings highlight the importance of cleaner production and have policy implications for dealing with industrial air pollution
The public health benefits of insulation retrofits in existing housing in the United States
BACKGROUND: Methodological limitations make it difficult to quantify the public health benefits of energy efficiency programs. To address this issue, we developed a risk-based model to estimate the health benefits associated with marginal energy usage reductions and applied the model to a hypothetical case study of insulation retrofits in single-family homes in the United States. METHODS: We modeled energy savings with a regression model that extrapolated findings from an energy simulation program. Reductions of fine particulate matter (PM(2.5)) emissions and particle precursors (SO(2 )and NOx) were quantified using fuel-specific emission factors and marginal electricity analyses. Estimates of population exposure per unit emissions, varying by location and source type, were extrapolated from past dispersion model runs. Concentration-response functions for morbidity and mortality from PM(2.5 )were derived from the epidemiological literature, and economic values were assigned to health outcomes based on willingness to pay studies. RESULTS: In total, the insulation retrofits would save 800 TBTU (8 Ă— 10(14 )British Thermal Units) per year across 46 million homes, resulting in 3,100 fewer tons of PM(2.5), 100,000 fewer tons of NOx, and 190,000 fewer tons of SO(2 )per year. These emission reductions are associated with outcomes including 240 fewer deaths, 6,500 fewer asthma attacks, and 110,000 fewer restricted activity days per year. At a state level, the health benefits per unit energy savings vary by an order of magnitude, illustrating that multiple factors (including population patterns and energy sources) influence health benefit estimates. The health benefits correspond to 5.9 billion per year in economic savings. CONCLUSION: In spite of significant uncertainties related to the interpretation of PM(2.5 )health effects and other dimensions of the model, our analysis demonstrates that a risk-based methodology is viable for national-level energy efficiency programs
Methodology and applications of city level CO2 emission accounts in China
China is the world's largest energy consumer and CO2 emitter. Cities contribute 85% of the total CO2 emissions in China and thus are considered as the key areas for implementing policies designed for climate change adaption and CO2 emission mitigation. However, the emission inventory construction of Chinese cities has not been well researched, mainly owing to the lack of systematic statistics and poor data quality. Focusing on this research gap, we developed a set of methods for constructing CO2 emissions inventories for Chinese cities based on energy balance table. The newly constructed emission inventory is compiled in terms of the definition provided by the IPCC territorial emission accounting approach and covers 47 socioeconomic sectors, 17 fossil fuels and 9 primary industry products, which is corresponding with the national and provincial inventory. In the study, we applied the methods to compile CO2 emissions inventories for 24 common Chinese cities and examined uncertainties of the inventories. Understanding the emissions sources in Chinese cities is the basis for many climate policy and goal research in the future
DOs and DON'Ts for using climate change information for water resource planning and management: guidelines for study design
Water managers are actively incorporating climate change information into their long- and short-term planning processes. This is generally seen as a step in the right direction because it supplements traditional methods, providing new insights that can help in planning for a non-stationary climate. However, the continuous evolution of climate change information can make it challenging to use available information appropriately. Advice on how to use the information is not always straightforward and typically requires extended dialogue between information producers and users, which is not always feasible. To help navigate better the ever-changing climate science landscape, this review is organized as a set of nine guidelines for water managers and planners that highlight better practices for incorporating climate change information into water resource planning and management. Each DOs and DON'Ts recommendation is given with context on why certain strategies are preferable and addresses frequently asked questions by exploring past studies and documents that provide guidance, including real-world examples mainly, though not exclusively, from the United States. This paper is intended to provide a foundation that can expand through continued dialogue within and between the climate science and application communities worldwide, a two-way information sharing that can increase the actionable nature of the information produced and promote greater utility and appropriate use
Childhood lead exposure in France: benefit estimation and partial cost-benefit analysis of lead hazard control
<p>Abstract</p> <p>Background</p> <p>Lead exposure remains a public health concern due to its serious adverse effects, such as cognitive and behavioral impairment: children younger than six years of age being the most vulnerable population. In Europe, the lead-related economic impacts have not been examined in detail. We estimate the annual costs in France due to childhood exposure and, through a cost benefit analysis (CBA), aim to assess the expected social and economic benefits of exposure abatement.</p> <p>Methods</p> <p>Monetary benefits were assessed in terms of avoided national costs. We used results from a 2008 survey on blood-lead (B-Pb) concentrations in French children aged one to six years old. Given the absence of a threshold concentration being established, we performed a sensitivity analysis assuming different hypothetical threshold values for toxicity above 15 μg/L, 24 μg/L and 100 μg/L. Adverse health outcomes of lead exposure were translated into social burden and economic costs based on literature data from literature. Direct health benefits, social benefits and intangible avoided costs were included. Costs of pollutant exposure control were partially estimated in regard to homes lead-based paint decontamination, investments aiming at reducing industrial lead emissions and removal of all lead drinking water pipes.</p> <p>Results</p> <p>The following overall annual benefits for the three hypothetical thresholds values in 2008 are: €22.72 billion, €10.72 billion and €0.44 billion, respectively. Costs from abatement ranged from €0.9 billion to 2.95 billion/year. Finally, from a partial CBA of lead control in soils and dust the estimates of total net benefits were € 3.78 billion, € 1.88 billion and €0.25 billion respectively for the three hypothesized B-Pb effect values.</p> <p>Conclusions</p> <p>Prevention of childhood lead exposure has a high social benefit, due to reduction of B-Pb concentrations to levels below 15 μg/L or 24 μg/L, respectively. Reducing only exposures above 100 μg/L B-Pb has little economic impact due to the small number of children who now exhibit such high exposure levels. Prudent public policies would help avoiding future medical interventions, limit the need for special education and increase future productivity, and hence lifetime income for children exposed to lead.</p
Chapter 19 Noise pollution and its impact on human health and the environment
This chapter deals with (1) the basic theory of sound propagation; (2) an overview of noise pollution problem in view of policy and standards by the World Health Organization, the United States, and the European Union; (3) noise exposure sources from aircraft, road traffic and railways, in-vehicle, work, and construction sites, and occupations, and households; (4) the noise pollution impact on human health and the biological environment; (5) modeling of regional noise-affected habitats in protected and unprotected land areas and the marine environment; (6) noise control measures and sustainability in view of sustainable building design, noise mapping, and control measures such as barriers and berms along roadsides, acoustic building materials, roadway vehicle noise source control, road surface, and pavement materials; and (7) environmental noise pollution management measures and their impact on human health
Europa, ha llegado el momento de terminar con la dependencia del crecimiento (Carta abierta)
   El 18 y 19 de septiembre de 2018, cientĂficos y polĂticos se encontraron en una conferencia clave celebrada en Bruselas. El objetivo de este encuentro, organizado por los miembros de cinco grupos polĂticos del Parlamento Europeo, junto con sindicatos y ONG, fue el de explorar las posibilidades para una “economĂa del post-crecimiento” en Europa
- …