14 research outputs found

    Corrigendum: A systematic review and economic evaluation of bisphosphonates for the prevention of fragility fractures

    Get PDF
    Abstract Background Fragility fractures are fractures that result from mechanical forces that would not ordinarily result in fracture. Objectives To evaluate the clinical effectiveness and safety of bisphosphonates [alendronic acid (Fosamax® and Fosamax® Once Weekly, Merck Sharp & Dohme Ltd), risedronic acid (Actonel® and Actonel Once a Week®, Warner Chilcott UK Ltd), ibandronic acid (Bonviva®, Roche Products Ltd) and zoledronic acid (Aclasta®, Novartis Pharmaceuticals UK Ltd)] for the prevention of fragility fracture and to assess their cost-effectiveness at varying levels of fracture risk. Data sources For the clinical effectiveness review, six electronic databases and two trial registries were searched: MEDLINE, EMBASE, The Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, Web of Science and BIOSIS Previews, Clinicaltrials.gov and World Health Organization International Clinical Trials Registry Platform. Searches were limited by date from 2008 until September 2014. Review methods A systematic review and network meta-analysis (NMA) of effectiveness studies were conducted. A review of published economic analyses was undertaken and a de novo health economic model was constructed. Discrete event simulation was used to estimate lifetime costs and quality-adjusted life-years (QALYs) for each bisphosphonate treatment strategy and a strategy of no treatment for a simulated cohort of patients with heterogeneous characteristics. The model was populated with effectiveness evidence from the systematic review and NMA. All other parameters were estimated from published sources. A NHS and Personal Social Services perspective was taken, and costs and benefits were discounted at 3.5% per annum. Fracture risk was estimated from patient characteristics using the QFracture® (QFracture-2012 open source revision 38, Clinrisk Ltd, Leeds, UK) and FRAX® (web version 3.9, University of Sheffield, Sheffield, UK) tools. The relationship between fracture risk and incremental net benefit (INB) was estimated using non-parametric regression. Probabilistic sensitivity analysis (PSA) and scenario analyses were used to assess uncertainty. Results Forty-six randomised controlled trials (RCTs) were included in the clinical effectiveness systematic review, with 27 RCTs providing data for the fracture NMA and 35 RCTs providing data for the femoral neck bone mineral density (BMD) NMA. All treatments had beneficial effects on fractures versus placebo, with hazard ratios varying from 0.41 to 0.92 depending on treatment and fracture type. The effects on vertebral fractures and percentage change in BMD were statistically significant for all treatments. There was no evidence of a difference in effect on fractures between bisphosphonates. A statistically significant difference in the incidence of influenza-like symptoms was identified from the RCTs for zoledronic acid compared with placebo. Reviews of observational studies suggest that upper gastrointestinal symptoms are frequently reported in the first month of oral bisphosphonate treatment, but pooled analyses of placebo-controlled trials found no statistically significant difference. A strategy of no treatment was estimated to have the maximum INB for patients with a 10-year QFracture risk under 1.5%, whereas oral bisphosphonates provided maximum INB at higher levels of risk. However, the PSA suggested that there is considerable uncertainty regarding whether or not no treatment is the optimal strategy until the QFracture score is around 5.5%. In the model using FRAX, the mean INBs were positive for all oral bisphosphonate treatments across all risk categories. Intravenous bisphosphonates were estimated to have lower INBs than oral bisphosphonates across all levels of fracture risk when estimated using either QFracture or FRAX. Limitations We assumed that all treatment strategies are viable alternatives across the whole population. Conclusions Bisphosphonates are effective in preventing fragility fractures. However, the benefit-to-risk ratio in the lowest-risk patients may be debatable given the low absolute QALY gains and the potential for adverse events. We plan to extend the analysis to include non-bisphosphonate therapies. Study registration This study is registered as PROSPERO CRD42013006883. Funding The National Institute for Health Research Health Technology Assessment programme

    Autologous chondrocyte implantation in the knee : systematic review and economic evaluation

    Get PDF
    Background: The surfaces of the bones in the knee are covered with articular cartilage, a rubber-like substance that is very smooth, allowing frictionless movement in the joint and acting as a shock absorber. The cells that form the cartilage are called chondrocytes. Natural cartilage is called hyaline cartilage. Articular cartilage has very little capacity for self-repair, so damage may be permanent. Various methods have been used to try to repair cartilage. Autologous chondrocyte implantation (ACI) involves laboratory culture of cartilage-producing cells from the knee and then implanting them into the chondral defect. Objective: To assess the clinical effectiveness and cost-effectiveness of ACI in chondral defects in the knee, compared with microfracture (MF). Data sources: A broad search was done in MEDLINE, EMBASE, The Cochrane Library, NHS Economic Evaluation Database and Web of Science, for studies published since the last Health Technology Assessment review. Review methods: Systematic review of recent reviews, trials, long-term observational studies and economic evaluations of the use of ACI and MF for repairing symptomatic articular cartilage defects of the knee. A new economic model was constructed. Submissions from two manufacturers and the ACTIVE (Autologous Chondrocyte Transplantation/Implantation Versus Existing Treatment) trial group were reviewed. Survival analysis was based on long-term observational studies. Results: Four randomised controlled trials (RCTs) published since the last appraisal provided evidence on the efficacy of ACI. The SUMMIT (Superiority of Matrix-induced autologous chondrocyte implant versus Microfracture for Treatment of symptomatic articular cartilage defects) trial compared matrix-applied chondrocyte implantation (MACI®) against MF. The TIG/ACT/01/2000 (TIG/ACT) trial compared ACI with characterised chondrocytes against MF. The ACTIVE trial compared several forms of ACI against standard treatments, mainly MF. In the SUMMIT trial, improvements in knee injury and osteoarthritis outcome scores (KOOSs), and the proportion of responders, were greater in the MACI group than in the MF group. In the TIG/ACT trial there was improvement in the KOOS at 60 months, but no difference between ACI and MF overall. Patients with onset of symptoms < 3 years’ duration did better with ACI. Results from ACTIVE have not yet been published. Survival analysis suggests that long-term results are better with ACI than with MF. Economic modelling suggested that ACI was cost-effective compared with MF across a range of scenarios. Limitations: The main limitation is the lack of RCT data beyond 5 years of follow-up. A second is that the techniques of ACI are evolving, so long-term data come from trials using forms of ACI that are now superseded. In the modelling, we therefore assumed that durability of cartilage repair as seen in studies of older forms of ACI could be applied in modelling of newer forms. A third is that the high list prices of chondrocytes are reduced by confidential discounting. The main research needs are for longer-term follow-up and for trials of the next generation of ACI. Conclusions: The evidence base for ACI has improved since the last appraisal by the National Institute for Health and Care Excellence. In most analyses, the incremental cost-effectiveness ratios for ACI compared with MF appear to be within a range usually considered acceptable. Research is needed into long-term results of new forms of ACI

    Autologous chondrocyte implantation in the knee: systematic review and economic evaluation

    Full text link

    An application of mass spectrometry for quality control of biologicals : highly sensitive profiling of plasma residuals in human plasma-derived immunoglobulin

    No full text
    Thromboembolic events (TEE) associated to trace amounts of plasmatic activated coagulation factor XI (FXIa) in administrated immunoglobulin (Ig) have recently raised concerns and hence there is a need for highly sensitive profiling of residual plasma source proteins. This study aims to consider LC-ESI-QTOF data-dependent acquisition in combination with sample fractionation for this purpose. Sample fractionation proved mandatory to enable identification of plasma residuals. Two approaches were compared: Ig depletion with protein G- protein A affinity chromatography and low-abundant protein enrichment with a combinatorial peptide ligand library (ProteoMinerTm, Bio-Rad). The latter allowed a higher number of identifications. Highly sensitive detection of prothrombotic FXIa was assessed with confident identification of a 1 ng/mg spike. Moreover, different residuals compositions were profiled for various commercial Ig products. Using a quantitative label free analysis, a TEE positive Ig batch was distinguished from other regular Ig products, with increased levels of FXIa but also other unique proteins. This could have prevented the recently observed TEE problems with Ig. The method is a convenient tool to better characterize Ig products after any plasma pool or manufacture process change, gaining insights in the product quality profile without any prior information required. Biological significance: This study characterized residual plasma proteins in Ig products, using bottom-up LC-MS/MS with conventional data-dependent acquisition, preceded by sample fractionation. Without any prior information or target-specific development, >30 proteins were identified in a commercial Ig product. Quality control relevance was demonstrated with the identification of FXIa spiked at 1 ng/mg in Ig, which is below the minimal thrombotic dose of 3 ng/mg observed in an in vivo model. Relative label-free quantitation highlighted significant differences in normalized abundances of residual proteins between Ig products. A TEE-positive batch was distinguished by unique profile of residual proteins, including FXIa but also various blood stream-regulator proteins (fibrinogen, angiotensinogen, antithrombin-III, complement component C8, ...). Those results emphasize that MS screening is a relevant first-line test to prevent any undesired concentration of plasma impurities after a plasma pool or manufacturing process change
    corecore