52 research outputs found

    Technical recommendations for clinical translation of renal MRI: a consensus project of the Cooperation in Science and Technology Action PARENCHIMA

    Get PDF
    Purpose The potential of renal MRI biomarkers has been increasingly recognised, but clinical translation requires more standardisation. The PARENCHIMA consensus project aims to develop and apply a process for generating technical recommendations on renal MRI. Methods A task force was formed in July 2018 focused on fve methods. A draft process for attaining consensus was distributed publicly for consultation and fnalised at an open meeting (Prague, October 2018). Four expert panels completed surveys between October 2018 and March 2019, discussed results and refned the surveys at a face-to-face meeting (Aarhus, March 2019) and completed a second round (May 2019). Results A seven-stage process was defned: (1) formation of expert panels; (2) defnition of the context of use; (3) literature review; (4) collection and comparison of MRI protocols; (5) consensus generation by an approximate Delphi method; (6) reporting of results in vendor-neutral and vendor-specifc terms; (7) ongoing review and updating. Application of the process resulted in 166 consensus statements. Conclusion The process generated meaningful technical recommendations across very diferent MRI methods, while allowing for improvement and refnement as open issues are resolved. The results are likely to be widely supported by the renal MRI community and thereby promote more harmonisation

    Cerebrospinal fluid matrix metalloproteinase-9 increases during treatment of recurrent malignant gliomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinases (MMPs) are enzymes that promote tumor invasion and angiogenesis by enzymatically remodeling the extracellular matrix. MMP-2 and MMP-9 are the most abundant forms of MMPs in malignant gliomas, while a 130 kDa MMP is thought to be MMP-9 complexed to other proteinases. This study determined whether doxycycline can block MMP activity <it>in vitro</it>. We also measured MMP-2 and MMP-9 levels in cerebrospinal fluid (CSF) from patients with recurrent malignant gliomas.</p> <p>Methods</p> <p>To determine whether doxycycline can block MMP activity, we measured the extent of doxycyline-mediated MMP-2 and MMP-9 inhibition <it>in vitro </it>using epidermal growth factor receptor (EGFR) transfected U251 glioma cell lines. MMP activity was measured using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) zymography. In addition, patients underwent lumbar puncture for CSF sampling at baseline, after 6 weeks (1 cycle), and after 12 weeks (2 cycles), while being treated with a novel chemotherapy regimen of irinotecan, thalidomide, and doxycycline designed to block growth/proliferation, angiogenesis, and invasion. Irinotecan was given at 125 mg/m<sup>2</sup>/week for 4 weeks in 6-week cycles, together with continuous doxycycline at 100 mg twice daily on Day 1 and 50 mg twice daily thereafter. Daily thalidomide dose in our cohort was 400 mg. Tumor progression was monitored by magnetic resonance imaging (MRI).</p> <p>Results</p> <p>Doxycyline <it>in vitro </it>completely abolished MMP-9 activity at 500 μg/ml while there was only 30 to 50% inhibition of MMP-2 activity. Four patients respectively completed 4, 3, 1, and 2 cycles of irinotecan, thalidomide, and doxycycline. Patient enrollment was terminated after one patient developed radiologically defined pulmonary embolism, and another had probable pulmonary embolism. Although CSF MMP-2 and 130 kDa MMP levels were stable, MMP-9 level progressively increased during treatment despite stable MRI.</p> <p>Conclusion</p> <p>Doxycycline can block MMP-2 and MMP-9 activities from glioma cells <it>in vitro</it>. Increased CSF MMP-9 activity could be a biomarker of disease activity in patients with malignant gliomas, before any changes are detectable on MRI.</p

    Coordinating Environmental Genomics and Geochemistry Reveals Metabolic Transitions in a Hot Spring Ecosystem

    Get PDF
    We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the “Bison Pool” (BP) Environmental Genome and a complementary contextual geochemical dataset of ∼75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin) of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92°C chemotrophic streamer biofilm community in the BP source pool to a 56°C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic “transition” community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot spring, reconstructing whole metabolic networks in order to illuminate community roles in shaping and responding to geochemical variability

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Resolving Prokaryotic Taxonomy without rRNA: Longer Oligonucleotide Word Lengths Improve Genome and Metagenome Taxonomic Classification

    Get PDF
    <div><p>Oligonucleotide signatures, especially tetranucleotide signatures, have been used as method for homology binning by exploiting an organism’s inherent biases towards the use of specific oligonucleotide words. Tetranucleotide signatures have been especially useful in environmental metagenomics samples as many of these samples contain organisms from poorly classified phyla which cannot be easily identified using traditional homology methods, including NCBI BLAST. This study examines oligonucleotide signatures across 1,424 completed genomes from across the tree of life, substantially expanding upon previous work. A comprehensive analysis of mononucleotide through nonanucleotide word lengths suggests that longer word lengths substantially improve the classification of DNA fragments across a range of sizes of relevance to high throughput sequencing. We find that, at present, heptanucleotide signatures represent an optimal balance between prediction accuracy and computational time for resolving taxonomy using both genomic and metagenomic fragments. We directly compare the ability of tetranucleotide and heptanucleotide world lengths (tetranucleotide signatures are the current standard for oligonucleotide word usage analyses) for taxonomic binning of metagenome reads. We present evidence that heptanucleotide word lengths consistently provide more taxonomic resolving power, particularly in distinguishing between closely related organisms that are often present in metagenomic samples. This implies that longer oligonucleotide word lengths should replace tetranucleotide signatures for most analyses. Finally, we show that the application of longer word lengths to metagenomic datasets leads to more accurate taxonomic binning of DNA scaffolds and have the potential to substantially improve taxonomic assignment and assembly of metagenomic data.</p></div

    Heptanucleotide Signature Based Cladogram.

    No full text
    <p>Cladogram derived from heptanucleotide signatures using Euclidean distances between 1,424 sequenced microbes. Terminal branches are color-coded to depict nearest neighbor taxonomic relationships as: strong relationships (same species or same genus) in red, good relationships (phylum or better) in blue, same domain in yellow and different domain in black. This figure shows that heptanucleotide signatures are conserved amongst phylogenetically similar organisms across the tree of life. The tendency for phylogenetically similar organisms to maintain similar oligonucleotide biases is the basis oligonucleotide-based clustering techniques.</p

    Metagenomic Sized Fragments.

    No full text
    <p>Completed prokaryotic genomes were broken into metagenomically relevant fragments sizes of: 1,000 bp, 2,500 bp, 5,000 bp, 10,000 bp, 15,000 bp, 25,000 bp and 50,000 bp by extracting a random fragment of each length from each of the 1,424 genomes. The tetranucleotide and heptanucleotide based Euclidean distance was calculated between each fragment and these distances were used to construct cladograms. Each cladogram was analyzed for the percentage of organisms with a nearest neighbor belonging to the same genus and this percentage is plotted verses fragment length. Improvement is seen as fragment length is increased, but the improvement levels off at approximately 10,000 bp for tetranucleotide signatures and approximately 5,000 bp for heptanucleotide signatures, with heptanucleotide signatures are performing better at all fragment lengths.</p
    corecore