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Abstract 

Background: Recent advances in microbial ecology are providing unprecedented opportunities to test Baas Beck-
ing’s oft-cited “everything is everywhere, environment selects” axiom. A number of recent studies have brought 
together genomic, ecological, and physico-chemical approaches that are, for the first time, beginning to test and 
quantify this axiom, providing fundamental shifts in our understanding of microbial ecology. Here we integrate envi-
ronmental sequencing with biogeochemistry to interrogate patterns in abundance and community composition—as 
well as dispersal mechanisms and timing—that underlie microbial migration in natural ecosystems. Our analysis 
focuses on the presence of and similarities across high identity genomic DNA scaffolds and fragments, thousands of 
which are distributed across over two dozen communities sampled from hydrothermal ecosystems from Yellowstone 
National Park, Wyoming and Great Boiling Springs, Nevada.

Results: Despite their geographical isolation from one another and physico-chemical isolation from surrounding 
mesophilic environments, a large number (>43,000) of long, high identity DNA scaffolds were conserved across two 
or more hot springs communities. This widespread distribution of nearly identical DNA fragments suggests active 
mechanisms driving microbial migration and genomic information sharing. Genes encoded on these scaffolds 
encompass a broad spectrum of metabolic capabilities from diverse thermophilic taxa, but include revealing biases in 
the functions and taxonomic distribution of shared genes. Evolutionary rate analysis suggests that genomic migra-
tion and sharing is not only recent and ongoing, but that very different mechanisms are driving chemotrophic versus 
phototrophic community information exchange—mechanisms that include both biological and abiotic vectors 
and catastrophic events that have acted as evolutionary bottlenecks in particular on sunlight-driven photosynthetic 
communities.

Conclusions: The intersection of biology and environment is privy to an unprecedented level of interrogation as a 
result of advances in ecosystems biology, in particular through the integration of data from analysis across multiple 
scales and disciplines. Both the methodologies developed herein, and the findings our results support, help advance 
our understanding of microbial ecology and dispersal mechanisms in natural environments.
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Background
During the past decade, environmental sequencing has 
ushered in a golden era in microbial ecology, providing 

an unprecedented glimpse into the structure, function, 
and evolution of microbial communities. Earlier analy-
ses were transformative but were necessarily piecemeal, 
focused largely on single genes and organisms, or occa-
sionally microbial microcosms, as proxies for interrogat-
ing and understanding the complex, natural communities 
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that comprise the majority of Earth’s biomass and evo-
lutionary history. As the quality and availability of these 
environmental datasets continues to increase, so do 
opportunities for integration and meaningful compari-
sons between them to be made.

Hydrothermal systems are famous for their remarkable 
physico-chemical and concomitant biological variations: 
orders of magnitude changes in pH and elemental con-
centrations, steep temperature gradients, and dynamic 
temporal shifts support taxonomic and functional bio-
diversity that is unparalleled in most other environments 
on the planet (Barns et al. 1994; Shock et al. 2010). How-
ever, our and other studies reveal that these systems—
many of which are separated by tens of kilometers and 
are geographically isolated—can display striking levels 
of genetic and genomic conservation (Ward et  al. 1998; 
Reno et  al. 2009; Miller-Coleman et  al. 2012; Swingley 
et al. 2012; Inskeep 2013). While this hydrothermal diver-
sity was anticipated even in early microbial biogeochemi-
cal studies (Brock 1967), what has been surprising is the 
remarkable propensity for microbes to distribute not just 
locally, but along global biogeographic patterns (Whi-
taker et al. 2003; Martiny et al. 2006; Whitaker and Ban-
field 2006). Once the domain of macroecologists, spatial 
scaling laws have recently been advanced for the micro-
bial majority and are providing powerful, scale-invariant 
models of local-to-global distributions of key biodiversity 
metrics (Fenchel and Finlay 2004; Green and Bohannan 
2006).

These advances owe much to recent progress in envi-
ronmental sequencing of microbial communities. Semi-
nal progress—and, arguably, the dawn of the current 
golden age of microbiology—came from PCR amplify-
ing and sequencing the gene encoding the small ribo-
somal RNA subunit from complex, natural microbial 
communities, most members of which were recalcitrant 
to cultivation-dependent microbiological approaches 
(Olsen et  al. 1994). More recently, microbial metagen-
ome and metatranscriptome sequencing has unveiled an 
almost unmanageable abundance of information on the 
distribution and evolution of genes, species, and com-
munities from all manner of hosts and environments 
(Handelsman 2004; Gilbert and Dupont 2011). These 
transformative studies have reshaped our understanding 
of how microbes and their environments interact and co-
evolve, yet very few studies have yet to investigate how 
these interactions change dynamically over Earth’s his-
tory or across its biogeochemically diverse ecosystems. 
The handful of studies so far conducted suggest that inte-
grating biogeography and evolutionary modeling into 
the wealth of metagenome analyses presently available is 
poised to provide enormous insights into how the Earth 
system evolves over time (Whitaker et al. 2003; Martiny 

et  al. 2006; Whitaker and Banfield 2006; Hanson et  al. 
2012).

Here we make use of recently available metagenomic 
datasets from studies of over two-dozen terrestrial hydro-
thermal systems in Yellowstone National Park (YNP) and 
Great Boiling Springs, Nevada, USA (GBS) (Fig.  1) to 
understand how patterns of gene and genome flow have 
shaped community architecture. Our findings incor-
porate evolutionary rate data from thousands of genes 
in each community. Taken together, our results suggest 
that the prokaryotic communities inhabiting YNP+GBS 
hydrothermal systems show striking and unexpected lev-
els of genomic similarity across their genomes.

Results
Gene, genome, and microbial migration: biological 
information flow in natural systems
Previous analyses have identified distinct thermophilic 
community compositions across YNP hot springs (Blank 
et al. 2002; Meyer-Dombard et al. 2005; Takacs-Vesbach 
et al. 2008; Inskeep et al. 2010; Swingley et al. 2012; Ins-
keep 2013), showing that the architecture of these com-
munities—both their overall function and taxonomic 
make-up—is strongly dependent on physical and geo-
chemical conditions (though with notable deviations, 
even in springs with nearly identical conditions, e.g. 
(Skirnisdottir et  al. 2000; Reysenbach and Shock 2002; 
Reno et  al. 2009; Inskeep et  al. 2010; Meyer-Dombard 
et  al. 2011; Cox et  al. 2011)). These studies have begun 
to identify molecular geobiological interactions: clear 
cases where a microbial or community phenotype—the 
ensemble of genetically encoded traits as determined by 
DNA sequencing—is directly coupled to one or more 
environmental features. Because of this close coupling 
between community function and the physical chemis-
try of hydrothermal systems, they provide unparalleled 
opportunities for interrogating how environment shapes 
and constrains biology and evolution.

While recent studies are beginning to decipher 
microbe-environment interactions in hydrothermal 
systems, what remains to be resolved are the underly-
ing evolutionary patterns that explain how these inter-
actions came to be. Are hydrothermal communities 
genetically unique, suggesting isolated populations that 
each independently adapt to a particular environmental 
niche? Or is their ‘cross-pollination’—transfer of bio-
logical information across hydrothermal ecosystems 
through gene and genome migration—so that genetic 
and genomic similarities in microbial communities cor-
relate with physico-chemical similarities in their environ-
ments? Differentiating between these possibilities is of 
key importance in understanding how microbes evolve 
and adapt to diverse environmental conditions, as well 
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as how environmental constraints influence the pat-
terns and rates of biological information flow in natural 
ecosystems.

To better understand how environment shapes and 
constrains community architecture and to what extent 
genes, species, and populations migrate across hydro-
thermal systems, we began by identifying highly con-
served genomic DNA scaffolds shared across twenty 
five metagenomes from YNP and GBS (Additional file 1: 
Table S1) (Costa et  al. 2009; Swingley et  al. 2012; Ins-
keep 2013). Of 659,351 scaffolds that had some degree 
of homology between two or more metagenomes, 43,532 
long (>1,000 bp) and high identity (>90% identity) DNA 
scaffolds were identified in at least two, and up to seven, 
distinct hot springs sampled from GBS and across 
~100 km of YNP. These highly conserved scaffolds are a 
small subset of the total scaffolds with homologs in two 
or more YNP metagenomes (~6.6% of 659,351 scaffolds, 
with the remainder of scaffolds having only 30–50% DNA 
identity). That these scaffolds are retaining high identi-
ties despite substantial geographic—and in some cases 

geochemical—barriers between these ecosystems sug-
gests a mechanism or mechanisms for preserving evo-
lutionary relatedness. Here we integrate a number of 
approaches to identify plausible underlying mechanisms 
that could facilitate migration and sharing of genomic 
DNA across geographically isolated springs (Fig.  1), 
thereby sustaining highways of information exchange 
across YNP ecosystems.

Taxonomic, geochemical, and functional constraints 
on microbial migration
We used comparative metagenomic and rRNA analyses 
to identify biases in the taxonomy, function, and biogeo-
chemical environments that correlated most strongly with 
the number of shared scaffolds between different metage-
nomes. A large number of shared, highly conserved scaf-
folds encode multiple genes whose taxonomic identity 
converges on a single genus or family (Fig.  2). This sug-
gests that detected scaffolds are fragments of contigu-
ous genomes that are dispersed by microbial migration: 
closely related species being sampled in two—or in some 

Fig. 1 Left map of sample sites (YNP1-2 and BP1-5) within YNP and approximate distance and direction of GBS sites and right number of long, high 
%id scaffolds shared between pairs of sites. Colors are based on types of sites that scaffolds are shared between (for instance, blue lines indicate 
transfers between two phototrophic communities) and line thickness is proportional to the number of shared scaffolds. The four panels show dif-
ferent ranges of synonymous substitution rates (Ks), a proxy for how conserved shared scaffolds are and how recently scaffold sharing most likely 
occurred (from most recent, Ks < 0.01 at top left, to most distant, Ks 0.32–0.50, at bottom right).
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cases across many—hot springs ecosystems. A subset of 
scaffolds could represent de facto horizontal gene transfer 
between distinct species, though rigorous identification 
of such cases ideally requires longer sequence data (from 
high coverage metagenomes) showing DNA from one 
species present in the genome of another. However, and 

more importantly, both mechanisms—horizontal transfer 
or microbial migration—underscore that genetic/genomic 
mobility and habitat ranges of microbial species are sub-
stantially greater than previously known.

To identify specific environmental factors that influ-
ence the probability of finding long, high identity 

Fig. 2 Fraction of total cDNAs shared across two or more YNP/GBS communities, by most likely taxonomic family (or ‘unclassified’, in cases of 
ambiguous taxonomy). Bar color and top-to-bottom ordering is based on families being present predominantly (>80%) in chemotrophic (red) or 
phototrophic (blue) communities (or grey for families present in both). Histograms give the synonymous substitution rate (Ks) distributions of cDNAs 
for that family (“noisy” distributions correspond to families with fewer cDNA sequences available for calculations). These data support that trends in 
Ks distributions (Fig. 3)—in particular the chemotroph peak at Ks ~0.18 and phototroph peak near Ks ~0—extend across multiple families and are 
not the result of a single, abundant family dominating the distribution.
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metagenome fragments in two or more communities, 
we performed iterative multiple linear regression (iMLR) 
on 20 available physical and geochemical measurements 
from each YNP metagenome (Additional file  1: Table 
S2). iMLR extends classical multiple linear regression by 
permuting the predictor variables being fit to a response 
variable (or, more strictly speaking, assigning predictor 
coefficients/weights of 0), either exhaustively or through 
some manner of subsampling. The technique is use-
ful as a method of dimensionality reduction as an alter-
native to e.g. principal components or factor analysis, 
especially when the relationship between predictor and 
response variables is initially unconstrained but may be 
0 (for instance abiotic factors, such as the solution con-
centration of aluminum, that were measured but have 
no known mechanism of interaction with life). iMLR 
has the advantage of explicitly removing “poor” predic-
tor variables from a model, whereas other dimensional-
ity reduction methods leave them as part of the model, 
either minimized or combined with other (e.g. latent) 
variables—but nonetheless increasing the variance of the 
model fit.

iMLR identified eight environmental parameters that 
best accounted for variability in the number of DNA frag-
ments shared between communities (p <=0.01), includ-
ing pH, temperature, and concentrations of NO3, SO4, 
O2[aq], and K+—all of which are known to have roles in 
biological pathways. Of the eight, only pH and nitrate and 
potassium concentrations showed individually significant 
correlations at a p < 0.05, underscoring the interdepend-
ence of biological and environmental factors (Additional 
file 1: Fig. S5A) and the importance of multivariate anal-
yses for integrating both (Alsop et  al. 2014). Notably, 
proximity did not significantly correlate (p  ~  0.38) with 
number of observed shared scaffolds; high identity DNA 
scaffolds are found even across great distances within the 
YNP+GBS systems (Additonal file 1: Figs. S1–S4). While 
some co-local communities do show increases in the 
shared DNA fragments (discussed below), our analysis 
suggests that the benefit of proximity drops off sharply as 
a result of the steep geochemical gradients present in hot 
springs. Indeed, “environment selects” what genes and 
pathways are most frequently shared between hydrother-
mal communities.

Extending on this idea of environmental selection, 
functional assignments of genes encoded by scaffolds 
shared across two or more communities yielded 16,056 
scaffolds with Enzyme Commission (EC) assignable func-
tions. These include functions that were both overrepre-
sented and underrepresented compared to their overall 
distribution in YNP/GBS metagenomes (Additional file 1: 
Table S3), further suggesting environmental selection 
on the types of functions being shared. Among these, 

carboxylases and oxidases were notably overrepresented, 
consistent with communities dependent on autotrophic 
pathways in environments known to be highly oxidizing 
(Rothschild et al. 2002). Biotin carboxylase in particular 
was encoded by 930 scaffolds involved in these transfers; 
this enzyme has recently been discovered to be involved 
in CO2 fixation in thermophiles, and suggests that high 
temperature autotrophy—above the temperature limit of 
photosynthesis and the Calvin Cycle—may be an impor-
tant enzyme for primary production in hydrothermal 
systems (Menendez et al. 1999; Auguet et al. 2008).

Mutation rates suggest rapid migration of biological 
information across YNP
Next we investigated whether rates of evolution within 
these 24 communities, and in the subset of DNA frag-
ments most frequently shared between them, could pro-
vide insight into the relative timescales or mechanisms 
of genomic migration across YNP/GBS ecosystems. 
Importantly, proper calibration and temporal constraint 
of microbial evolutionary rates requires experimental 
measurement in specific strains and species, as rates have 
been shown to vary across even closely related organ-
isms. Here, we instead focus on conservation of neutral 
mutation rates between major identifiable clades in these 
hydrothermal ecosystems. While differences in neutral 
mutation rates may arise due to a variety of mechanisms 
(e.g. variations in population sizes, reproductive success/
adaptive fitness to a specific niche, or differences in DNA 
repair fidelity) (Ochman et  al. 1999; Kuo and Ochman 
2009; Barrick et  al. 2009; Hanson et  al. 2012), observed 
similarities in neutral mutation rates are most consist-
ent with a single, null hypothesis: isolation of and diver-
gence between two microbial communities (Hanson et al. 
2012). Agreement of neutral mutation rates across many 
genes common to two communities (as opposed to e.g. 
just 16S rRNA) as well as in multiple species within each 
community further supports and points to the isolation 
and subsequent divergence of those communities as the 
most likely cause of observed genomic differences—even 
if the absolute timing of that divergence can not be meas-
ured due to absence of calibration points.

To identify and measure neutral mutation rates across 
these hydrothermal communities, we examined DNA 
substitution rates in the protein coding portions of the 
best-conserved scaffolds present in two or more com-
munities. Figure 3 shows synonymous substitution rates 
(Ks)—which, for well-conserved genes, can be equated 
with background DNA mutation rates—for 30,668 cDNA 
sequences found on scaffolds in two or more communi-
ties. Figure  3 separates Ks distributions for the domi-
nant types of metabolism in YNP +  GBS communities: 
phototroph-dominated communities, occurring below a 
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temperature of ~73°C, and higher temperature chemo-
trophic communities. While intraspecies background 
mutation rates are indeed similar between community 
members across this well-conserved subsampling of pro-
tein-coding genes, notably, significant differences in Ks 
distributions and statistics were observed between pho-
totroph- versus chemotroph-dominated communities 
(Fig. 3). Chemotrophic communities show a distinct Pois-
son distribution centered at a Ks of 0.18, whereas photo-
troph communities exhibit non-Poisson distributions.

Importantly, taxonomic assignment of scaffolds shows 
that Ks distributions are relatively constant across 
prokaryotic phyla in each metabolic category (Fig. 2). This 
important result supports the null hypothesis that Ks dis-
tributions reflect isolation and subsequent diversification 

of these hydrothermal communities. Moreover, there 
is no clear evidence for a single, abundant taxon domi-
nating Ks distributions after correcting for the overall 
abundance of each taxa in metagenomic data, as might 
be the case in communities dominated by one or a few 
species (i.e. the probability of observing shared scaffolds 
increases proportionately with taxa abundance).

Recent models shed light on these distributions of 
background mutation rates. For instance, the chemo-
troph Poisson distribution is consistent with models 
of community evolution where mutations occur at a 
relatively constant background frequency but fixation 
occurs at different rates across genomes (Aris-Brosou 
and Excoffier 1996; Patwa and Wahl 2008; Wielgoss et al. 
2013). The chemotroph Poisson distribution (and Ks 

Fig. 3 Distribution of synonymous substitution rates (Ks) for all cDNAs transferred between chemotrophic (red), between phototrophic (blue), and 
from chemotrophic-to-phototrophic (green) communities. The inset expands the lowest Ks (<0.01) bin, illustrating the low Ks peak (Ks ~0 to 0.2) in 
chemotrophic and especially phototrophic communities. The top axis uses recently published prokaryotic mutation rates to bracket likely upper 
(top) and lower (bottom) limits on cDNA transfer times.
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~0.18 peak) represents the average evolutionary distance 
across sampled chemotroph communities and points to a 
strong bottleneck that, in effect, “reset the clock” on the 
evolutionary divergence between chemotrophs in Yel-
lowstone hydrothermal communities. Using a spectrum 
of recent measurements of microbial background muta-
tion rates, it becomes possible to at least loosely estimate 
the average elapsed time since isolation between YNP 
chemotrophic communities (discussed below) as a way 
to speculate on plausible bottleneck events. Also worth 
highlighting is the unexpected increase in the lowest 
Ks bin (Fig.  1b), suggesting a subset of genes that have 
been very recently shared between YNP chemotroph 
communities.

This distinct Poisson peak is absent in phototrophic 
communities, which show a polyphasic distribution with 
an abrupt peak/mode at the lowest Ks bin and a ‘saw-
tooth’ tail extending to higher Ks values (Fig.  3, blue). 
These fundamental differences suggest very different 
mechanisms and/or bottlenecks are driving dispersal 
and evolution in chemotrophic vs. phototrophic com-
munities. The low Ks peak observed among chemotroph 
communities is, however, present in the phototrophic 
communities, pointing to a subset of nearly identical 
genes and scaffolds shared across these communities. 
This nearly identical subset appears to be moving against 
the tide of evolution, and sustaining it requires a mecha-
nism whereby genes can be redistributed between geo-
graphically isolated communities (thereby ‘resetting’ the 
evolutionary distance between some subset of genes in 
those communities) (Martiny et al. 2006).

The observed Ks peaks correspond to the amount 
of time that, on average, will elapse between microbial 
migration events across YNP communities (keeping in 
mind that long, high %ID scaffolds represent ~6.6% of 
total scaffolds and, therefore, migration events are still 
minor contributors to overall community differences). 
Because studies of prokaryotic mutation rates are still 
limited in taxonomic scope, we scoured recent literature 
to apply a range of plausible rates (1 × 10−7 to 1 × 10−9 
substitutions per synonymous site per year) (Drake 
1991; Ochman et al. 1999; Kuo and Ochman 2009; Wiel-
goss et al. 2013). While frustrating in that these calibra-
tions extend across two orders of magnitude of plausible 
microbial evolutionary rates, it is worth noting that their 
estimation of community divergence times—250,000 to 
25 million years for phototrophic communities and 1.25 
million to 125 million years for chemotrophic commu-
nities (Fig.  3, top)—spans a well-known range of YNP 
catastrophic events that may indeed constitute strong 
evolutionary bottlenecks that, as discussed below, would 
present quite differently to phototrophic versus chemo-
trophic communities.

Discussion
The Yellowstone caldera has been a hotbed of geologi-
cal activity throughout its history. Three major eruptions 
have occurred with 600,000–800,000  year periodicity, 
culminating most recently in the Lone Creek eruption cf. 
640,000 years ago (Lanphere et al. 2002). The region has 
experienced major episodic glaciations, most recently the 
Pinedale/Great Pleistocene glaciation, thought to have 
covered >90% of the YNP surface between 15,000 and 
20,000  years ago. These evolutionary bottlenecks carry 
clear but distinct implications for microbial life at the 
YNP surface (phototrophic and chemotrophic) versus 
those in the subsurface (exclusively chemotrophic). Gla-
ciations and supereruptions would have been cataclysmic 
for photosynthetic life. If not entirely sterilized, photo-
synthetic habitability and primary productivity would 
have been dramatically abated, with subsequent recoloni-
zation giving the appearance of genetically ‘young’ com-
munities, as observed here in metagenome comparisons 
and supported by diffusion models (below). Conversely, 
subsurface hyperthermophiles would be the one group of 
microbes that might survive such a catastrophic incur-
sion, supporting a genomic record harboring much older 
evolutionary divergence.

To test whether the observed patterns are compatible 
with ecosystem mutation/migration/extinction models, 
we developed jump diffusion simulations to integrate Fick-
ian diffusion of mutating species across 2D and 3D lattices. 
These simulations track populations comprised of individ-
ual cells as they migrate and mutate across lattices while 
varying three key parameters: the probability, distance, 
and dimensionality (2D/3D) of allowed jumps between 
lattice points. Out to ~105 simulations (Fig.  4), the Pois-
son curve of chemotrophs appears to most clearly be cor-
related with models where jumps between lattice points 
occur with high probability but are restricted to adjacent 
jump: migration must occur between adjacent communi-
ties. Conversely, the polyphasic distributions only emerge 
at higher jump distances, where skipping multiple lattice 
points becomes the norm. The polyphasic distribution is, 
in effect, the summation of multiple Poisson curves spread 
out across lattice space, and sampling across this space 
would result in ‘sawtooth’ Ks distributions analogous to 
that observed for YNP/GBS phototrophs.

Notably, YNP/GBS photosynthetic mats are teeming 
with life. Their relatively low temperatures make them 
suitable for grazing by insects and arachnids and intru-
sion by mammals, all of which are potential vectors for 
transporting mat floccules between proximal hot springs. 
The idea that eukaryotes simply don’t survive above 
~56°C is a misnomer; transient interactions between 
macroscopic life and high temperature hot springs are 
easily observed in the field (perhaps most identifiably 
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among insects and vertebrates including Home sapiens). 
Chemotrophic communities thrive at temperatures that 
do rapidly dissuade or sterilize these macroscopic vec-
tors, and their propagation is likely more dependent 
on non-biological (e.g. Aeolian, climatic, groundwater) 
mechanisms for surface and subsurface transport and 
migration. These observations are consistent both with 
the decreased frequency of low Ks values among chemo-
troph communities (Fig. 3) as well as with the potential 
for vectors to carry mat floccules across long distances. 
The additional requirement that communities are trans-
ported between physico-chemically compatible environ-
ments is exactly consistent with the low probability/long 
distance requirement of jump diffusion models.

While phototroph communities are constrained by 
their metabolic lifestyle to surface migrations, chemo-
troph communities can thrive independent of sunlight 
and, theoretically, access much of the YNP subsurface. 
The YNP subsurface provides contiguous, anastomosing 
hydrothermal channels that may be enabling chemotroph 
migration: their contiguity amounts to higher frequency, 

shorter jump length migrations consistent with jump 
diffusion models responsible for observed Poisson dis-
tributions. While it remains to be directly sampled e.g. 
through drill cores, the notion of a substantial chemotro-
phic biosphere is supported by YNP hydrogeology, which 
suggests a prolific network of subsurface hydrothermal 
channels (White et al. 1975; Fournier 1989; Chapelle et al. 
2002). Though water within hydrothermal chimneys is at 
temperatures well above the limit for life (Fournier 1989; 
Fournier et  al. 2014), hydrothermal gradients radiating 
through pore spaces around these channels establish 
a range of temperatures and physico-chemical condi-
tions compatible with thermophilic communities (Fig. 5), 
entirely independent of photosynthesis (Gold 1992; Fisk 
et  al. 1998). Furthermore, these hydrothermal networks 
may extend over large extents of YNP, establishing inter-
connected subsurface ‘highways’ for microbial migration 
and genomic information exchange extending through 
shallow, permeable glacial sediments and possibly into 
deeper active faults extending 4–6  km below the YNP 
surface (White et al. 1975; Fournier 1989) (Fig. 5).

Fig. 4 Four exemplary jump diffusion models of microbial migration vs. mutation across a 3D lattice. The two leftmost panels show the polyphasic 
distributions resulting from allowing longer distance jumps (djump > 1, here djump = 2), while the two right panels show Poisson distributions that 
emerge from restricting jumps to adjacent lattice cells (djump = 1). dphysical and dgenetic correspond, respectively, to lattice and genetic Euclidean dis-
tances, plotted here as histogram heat maps for all pairs of cells in each population after 100 time steps (2100 cells). Panels 1 vs. 2 and 3 vs. 4 illustrate 
the (linear) effect of halving the jump probability, which effectively cuts the average physical distance between populations in half. A clocklike 
assumption of mutation rates and identical number of time steps for each simulation results in essentially identical dgenetic (x axis) distributions. The 
combined graph at right shows the dphysical sum for each of the four panels.
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Conclusions
While it is well known that environment has shaped the 
evolutionary trajectory of microbial life, in few places 
is it as clear as in the greater Yellowstone hydrothermal 
systems where microorganisms are directly tied to envi-
ronmental energy and nutrient sources. By integrating 
data on the distribution of metagenomes sampled from a 
broad range of hydrothermal settings with genetic analy-
sis of the most highly conserved genes in those systems, 
we have begun to recustruct a history of the co-evolution 
of life and environment in the greater YNP system.

Taken together, our data show that thermophilic com-
munities from these remarkably diverse YNP  +  GBS 
hydrothermal settings are far from being biogeographi-
cally isolated islands: the extant microbial communities 

are the result of millions of years of shuttling and recom-
bination between hydrothermal ecosystems by both 
biological and environmental/climatic vectors. These 
vectors, combined with several catastrophic mass extinc-
tions driven by YNP eruptions, have left distinct signa-
tures in the rates of evolution of microbial communities, 
most notably in phototrophic communities bound to 
sun lit surface environments versus chemotrophs, 
whose utilization of geochemical energy sources appar-
ently expanded their habitable zones well into the YNP 
subsurface. Simulations suggest the evolutionary rate 
signatures are a combination of surface transport mecha-
nisms, which are occurring with irregular periodicity but 
over longer distances across YNP, and on a relatively slow 
but persistent hydrothermal “conveyer” that would drive 
dispersal of chemotrophic communities through a YNP 
subsurface biosphere. Our results have begun to map 
distinct highways for microbial migration and genomic 
exchange across hydrothermal systems, and beckon for 
much more extensive sampling of the YNP biosphere, 
particularly what may be a prolific subsurface reservoir of 
chemotrophic life.

Methods
DNA scaffolds for the 24 metagenomes analyzed were 
downloaded from the Joint Genome Institute IMG/M 
web server (Grigoriev et al. 2011). All metagenomic scaf-
folds were combined into a single. FASTA file and an all-
versus-all BLASTN (Altschul et al. 1990) was performed 
using this file as input. BLASTN output file was parsed to 
find all instances of scaffold overlap >1,000 bp in length 
with >90%ID between scaffolds from different metage-
nomes. A tally of overlaps (migrations) was determined 
between each sampled location and counts were nor-
malized based on metagenome sizes. Normalization fac-
tors were determined by dividing the average sizes of the 
metagenomes involved by the average size of all metage-
nomes, or by dividing the number of scaffolds involved in 
migration by the total number of scaffolds obtained from 
a specific metagenome. Migration counts between sites 
were then normalized using this factor.

Iterative multiple linear regression was performed 
using the stepAIC() subroutine from R, in both the 
forward and reverse directions over 1,000 steps. Ini-
tial multiple linear regression was performed using 
R’s  lm() command to generate an equation such that 
the number of DNA migrations between any two com-
munities was set to equal the difference between all 
geochemical and physical parameters (DNA migra-
tions =  m1ΔpH +  m2ΔTemperature +  m3Km +  m4Δ 
[Al]  +  …  +  b) across communities. On ensuing itera-
tions, model variances from observed data were pro-
gressively minimized through coefficient optimization 

Fig. 5 Proposed contiguous isotherms compatible with chemotro-
phic life in the YNP subsurface. These anastomosing channels are 
established by thermal radiation from superheated water as well as 
deeper magmatic interactions [due to the latter, water temperature 
exceeds 150°C at depth in the YNP caldera subsurface (White et al. 
1975; Fournier 1989)]. Colors illustrate regions of higher to lower 
temperature (red→orange→yellow). Whereas surface migration 
is restricted to ‘jumps’ between adjacent hot springs, subsurface 
migration can occur along highways established by these isotherms. 
Adapted from Encyclopedia Britannica (2006).
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across all possible pairs of communities. R’s stepAIC() 
command was then invoked on the optimized multiple 
linear regression equation to systematically add and/or 
remove variables from the overall MLR equation with 
the optimality criterion of maximizing goodness of fit of 
the model predictions vs. observed values of DNA migra-
tions and physico-chemical measurements.

For Ka/Ks estimation across shared scaffolds, all protein 
encoding (cDNA) sequences encoded by scaffolds from 
the 24 metagenomes, as well as their transcribed amino 
acid sequences, were downloaded from JGI’s IMG/m 
server. cDNA sequences were combined into a single.
FASTA file and an all-verses-all NCBI BLASTN was 
performed using the combined file as input. As with the 
“all scaffolds” approach above, the BLASTN output was 
parsed to find all instances of overlap >1,000 bp in length 
with >90% identity between cDNA sequences from differ-
ent metagenomes. From this subset, cDNA sequences and 
translated amino acid sequences were aligned and subse-
quently Perl scripts were used to downselect sequences 
that were predicted to be fully in frame and beginning 
with a start codon. Ks values between overlapping cDNA 
sequences were calculated using the Ka/Ks calculator 
(Zhang et al. 2006) software package, using both aligned 
cDNA sequences and their aligned, translated amino 
acid sequences as input. The Ka/Ks software package was 
run using the model averaging (MA) settings and cor-
recting for multiple substitutions. MA extends the well 
known Goldman–Yang model, accounting for evolution-
ary features including transition-transversion ratios and 
nucleotide frequencies, and applies them to codon-based 
substitution frequencies. The Ka/Ks software package 
outputs a text file containing the Ks values between all 
pairs of high identity cDNA sequences.

Jump diffusion models tracked cellular mutation and 
migration across 100 timesteps, with each cell doubling 
at each timestep (1 initial cell, 2100 total cells at termina-
tion). Each cell was assigned a 20 position, 10 bit genetic 
code allowed to mutate with probabilities randomly sam-
pled from a range of 0→1.0 mutation per site per genera-
tion. Each cell was allowed to migrate with a likelihood of 
migrating N steps randomly sampled from an equiproba-
ble range of 0–0.5. The number of lattice migration steps 
N was set at time 0 in each simulation at an integral value 
of either 0, 1, 2, or 3. The dimensionality of migration was 
set at time 0 to either allow migrations in all three dimen-
sions, or restrict migrations to 2D steps across the lattice 
surface. At the termination of each simulation, all cells 
were compared pairwise to calculate Euclidean distances 
between their 20-mer ‘genomes’, as well as between their 
respective [xyz] positions in the lattice, and the result-
ant histogram showing the distribution of these dis-
tances is plotted in Fig. 4, averaging distances across 105 

independent simulations at four different values of model 
parameters.

Ks histograms were generated by binning Ks values 
into 0.01 Ks unit bins, separating sites based on commu-
nity metabolic type that migrations occurred between 
(between chemotrophic, between phototrophic, between 
phototrophic and chemotrophic). The 0–0.01 Ks histo-
gram (Fig. 3—inset) was generated by binning all Ks val-
ues <0.01 into 0.002 Ks unit bins, also separated by the 
type of community the migrations occurred between. 
Ks counts were normalized by dividing observed counts 
by the total number of >1,000 bp cDNA sequences with 
each corresponding metagenome. Chemotrophic and 
phototrophic communities were normalized separately 
so that community types could be compared based on 
the fraction of cDNA migrations at a given Ks value (bin).

cDNAs from the 24 metagenomes were compared to the 
KEGG enzyme database (Kanehisa and Goto 2000) using 
NCBI BLASTX, with best BLAST e-values (1−20 or better) 
used for EC assignments. EC counts within each metagen-
ome and within the shared scaffold subset determined and 
compared using Pearson’s Chi squared test, implemented 
in R’s chisq.test(). Expected EC counts used in Chi squared 
were based on overall EC frequencies within each metage-
nome, and compared with observed EC assignments for 
shared ECs with a p value threshold of 0.05.

cDNAs from the 24 metagenomes were compared to 
the NCBI nt database using NCBI BLASTN, with taxo-
nomic assignment based on best hit BLAST e-values 
better than 1−20. The NCBI taxonomy spreadsheet was 
then used to determine the Linnean hierarchy (e.g. genus, 
family) of all taxonomically assigned cDNA sequences. 
Data presented are at the family level for robustness of 
assignment, as determined by dividing the count of 
cDNA sequences assigned to a family by the total count 
of cDNA sequences in each metagenome, as well as in 
shared scaffold subsets. Ks histograms for each fam-
ily were determined by dividing all cDNA migrations 
assigned to a taxonomic family into 0.01 Ks unit bins 
from 0.01 to 0.50.

Additional file

Additional file 1. Figures S1–S4: Number of cDNA migrations 
(line thickness) detected across four ranges of Ks values (increasing in 
each panel from top left to lower right) among both phototroph and 
chemotroph communities (blue and red lines, respectively). S1 shows 
cDNA migrations between Lower Geyser Basin and other hot springs, S2 
between Bison Pool and other hot springs, S3 between Norris Geyser 
Basin and other hot springs, and S4 between Mammoth and other hot 
springs. Figure S5A: PCA of measured geochemical parameters vs. 
detected cDNA migrations and Figure S5B: cDNA migrations mapped in 
the PCA space determined in S5A. Table S1: YNP/GBS physical and geo-
chemical metadata. Table S2: Multiple regression analysis results. Table 
S3: Functions of over- and under-represented genes among detected 
cDNA migrations.
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