184 research outputs found

    On complex dynamics in a Purkinje and a ventricular cardiac cell model

    Get PDF
    Cardiac muscle cells can exhibit complex patterns including irregular behaviour such as chaos or (chaotic) early afterdepolarisations (EADs), which can lead to sudden cardiac death. Suitable mathematical models and their analysis help to predict the occurrence of such phenomena and to decode their mechanisms. The focus of this paper is the investigation of dynamics of cardiac muscle cells described by systems of ordinary differential equations. This is generically performed by studying a Purkinje cell model and a modified ventricular cell model. We find chaotic dynamics with respect to the leak current in the Purkinje cell model, and EADs and chaos with respect to a reduced fast potassium current and an enhanced calcium current in the ventricular cell model -- features that have been experimentally observed and are known to exist in some models, but are new to the models under present consideration. We also investigate the related monodomain models of both systems to study synchronisation and the behaviour of the cells on macro-scale in connection with the discovered features. The models show qualitatively the same behaviour to what has been experimentally observed. However, for certain parameter settings the dynamics occur within a non-physiological range

    Global existence of solutions to Keller--Segel chemotaxis system with heterogeneous logistic source and nonlinear secretion

    Get PDF
    We study the following Keller-Segel chemotaxis system with logistic source and nonlinear secretion. For this system, we prove the global existence of solutions under suitable assumptions

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    The stability of parabolic problems with nonstandard p(x,t)-growth

    No full text
    In this paper, we study weak solutions to the following nonlinear parabolic partial differential equation ∂tu−diva(x,t,∇u)+λ(|u|p(x,t)−2u)=0inΩT, where λ≥0 and ∂tu denote the partial derivative of u with respect to the time variable t, while ∇u denotes the one with respect to the space variable x. Moreover, the vector-field a(x,t,⋅) satisfies certain nonstandard p(x,t) -growth and monotonicity conditions. In this manuscript, we establish the existence of a unique weak solution to the corresponding Dirichlet problem. Furthermore, we prove the stability of this solution, i.e., we show that two weak solutions with different initial values are controlled by these initial values

    Analysis and simulation of a modified cardiac cell model gives accurate predictions of the dynamics of the original one

    Get PDF
    The 19-dimensional TP06 cardiac muscle cell model is reduced to a 17-dimensional version, which satisfies the required conditions for performing an analysis of its dynamics by means of bifurcation theory. The reformulated model is shown to be a good approximation of the original one. As a consequence, one can extract fairly precise predictions of the behaviour of the original model from the bifurcation analysis of the modified model. Thus, the findings of bifurcations linked to complex dynamics in the modified model - like early afterdepolarisations (EADs), which can be precursors to cardiac death - predicts the occurrence of the same dynamics in the original model. It is shown that bifurcations linked to EADs in the modified model accurately predicts EADs in the original model at the single cell level. Finally, these bifurcations are linked to wave break-up leading to cardiac death at the tissue level

    Analysis and simulation of a modified cardiac cell model gives accurate predictions of the dynamics of the original one

    Get PDF
    The 19-dimensional TP06 cardiac muscle cell model is reduced to a 17-dimensional version, which satisfies the required conditions for performing an analysis of its dynamics by means of bifurcation theory. The reformulated model is shown to be a good approximation of the original one. As a consequence, one can extract fairly precise predictions of the behaviour of the original model from the bifurcation analysis of the modified model. Thus, the findings of bifurcations linked to complex dynamics in the modified model - like early afterdepolarisations (EADs), which can be precursors to cardiac death - predicts the occurrence of the same dynamics in the original model. It is shown that bifurcations linked to EADs in the modified model accurately predicts EADs in the original model at the single cell level. Finally, these bifurcations are linked to wave break-up leading to cardiac death at the tissue level

    Bifurcation analysis for axisymmetric capillary water waves with vorticity and swirl

    No full text
    We study steady axisymmetric water waves with general vorticity and swirl, subject to the influence of surface tension. This can be formulated as an elliptic free boundary problem in terms of Stokes' stream function. A change of variables allows us to overcome the generic coordinate-induced singularities and to cast the problem in the form “identity plus compact,” which is amenable to Rabinowitz's global bifurcation theorem, whereas no restrictions regarding the absence of stagnation points in the flow have to be made. Within the scope of this new formulation, local curves and global families of solutions, bifurcating from laminar flows with a flat surface, are constructed
    corecore