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Analysis and simulation of a modified cardiac cell model gives
accurate predictions of the dynamics of the original one

André H. Erhardt, Susanne Solem

Abstract

The 19-dimensional TP06 cardiac muscle cell model is reduced to a 17-dimensional version,
which satisfies the required conditions for performing an analysis of its dynamics by means of
bifurcation theory. The reformulated model is shown to be a good approximation of the original
one. As a consequence, one can extract fairly precise predictions of the behaviour of the original
model from the bifurcation analysis of the modified model. Thus, the findings of bifurcations linked
to complex dynamics in the modified model — like early afterdepolarisations (EADs), which can
be precursors to cardiac death — predicts the occurrence of the same dynamics in the original
model. It is shown that bifurcations linked to EADs in the modified model accurately predicts EADs
in the original model at the single cell level. Finally, these bifurcations are linked to wave break-up
leading to cardiac death at the tissue level.

1 Introduction

Mathematical modelling and simulations are important to investigate and analyse phenomena in life
science. Two advantages of a detailed mathematical model is the possibility to use mathematical
theory in order to get an in-depth understanding of the underlying mechanisms of certain dynamics,
and to develop numerical experiments instead of real experiments. For instance, the mathematical
models may be used for drug testing and to study drug response or its properties [1, 2, 3, 4, 5, 6].
To derive a suitable mathematical model describing complex behaviour in biology like a cardiac action
potential, based on experimental data, displaying all facets and dynamics of a cardiac muscle cell is a
tough challenge. In addition to normal action potentials of a cardiac muscle cell, certain kinds of cardiac
arrhythmia or chaos may occur [7, 8, 9, 10, 11]. This includes specific types of abnormal heart rhythms,
which can lead to sudden cardiac death. It is therefore highly interesting and important to understand
the complex behaviour and mechanism of such biological phenomena. A good mathematical model
in combination with a meaningful analysis helps to decode these phenomena, the most prominent
being early afterdepolarisations (EADs). However, due to the above mentioned multifaceted nature of
cardiac cells, cardiac cell models can indeed be quite complex [12, 13]. This poses challenges both
from a mathematical and computational point of view.

The (endocardial) TP06 cardiac cell model [14], which is based on the TNNP04 model [15], is by now
a well-established and much studied cardiac cell model [9, 10, 11, 12, 13, 16]. Despite that, a rigorous
mathematical analysis of all its dynamics is still lacking. Performing such an analysis on the model is
hard due to two main things: it is a 19-dimensional nonlinear model and it is not smooth.

In this paper we modestly alter the non-smooth TP06 model in order to generate a smooth 17-
dimensional version for which we can apply bifurcation theory. We show that the bifurcation theory
aids in identifying complex dynamics linked to cardiac arrhythmia of the modified model, such as
EADs. Through several examples, both at the single cell level and at the tissue level, we show that
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the bifurcation analysis of the modified model predicts similar, or even identical, dynamics of the orig-
inal TP06 model. Thus, a bifurcation analysis of the modified model can help in decoding complex
dynamics of the original model, which in turn can further the understanding of the heart.

Finally, we would like to emphasise that the approach in this paper can be utilised for other similar
models stemming from the life sciences.

2 On modelling cardiac action potentials and related issues

The mathematical modelling of action potentials (APs) of excitable biological cells like neurons and
cardiac muscle cells has its origin in the famous and pioneering Hodgkin–Huxley model [17]. Here, an
approach was established that can be utilised to model APs of excitable biological cells by a system
of ordinary differential equations (ODEs). In the last decades there has been an immense develop-
ment in the modelling of cardiac muscle cells. These conductance-based models represent a minimal
biophysical interpretation of an excitable biological cell in which current flow across the membrane is
due to charging of the membrane capacitance and movement of ions across ion channels, which are
selective for particular ionic species, cf. Figure 1. An initial stimulus activates the ion channels as soon
as a certain threshold potential is reached. Then, these ion channels break open and/or up allowing
an ion current flow, which changes the membrane potential. This electrophysiological behaviour can
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Figure 1: Scheme of a cardiac myocyte: SR denotes the sarcoplasmic reticulum, INaCa = Na+/Ca2+

an exchanger current & INaK = Na+/K+ a pump current [15].

be described by the following ODE using the Hodgkin–Huxley formalism:

Cm
dV

dt
= −Iion + Istim. (1)

Here, V denotes the voltage (inmV ) and t the time (inms), while Iion is the sum of all transmembrane
ionic currents. Istim = 52 pA/pF (applied for 2 ms) represents the externally applied initial stimulus
and Cm = 1 µF/cm2 the membrane capacitance.

The main issue with several of the cardiac models of the form (1), from a mathematical point of view,
is the requirement of a sufficiently smooth and regular ODE system in order to utilise theory such as
bifurcation analysis. Bifurcation theory has already been widely utilised to investigate the dynamics of
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cardiac muscle cell models, see [18, 19, 20, 21, 22, 23, 24, 25, 26]. However, many of the existing
detailed models are not smooth enough for the theory to be applied, see for example [14, 15, 27].
A second problem is that these systems may not exhibit a (suitable) equilibrium, i.e. the long-time
behaviour (t→∞) of the system does not converge into a stable steady state.

In addition, very detailed and high-dimensional models also cause numerical issues, as they might
be quite sensitive and computationally expensive. This makes them harder to investigate. In general,
lower-dimensional models are easier and faster to analyse and to simulate. However, important infor-
mation can be lost. The desired aim of cardiac cell modelling is to study a most detailed cardiac muscle
cell model, which simultaneously is mathematically and computationally feasible. To this end, we will
focus on the 19-dimensional TP06 model [14], a cardiac model of the form (1) exhibiting the above
mentioned issues: lack of smoothness, nonlinear high-dimensionality, and lack of a computationally
stable equilibrium. We will modestly reformulate the model in order to derive a good approximation
and to be able to apply numerical bifurcation analysis using the CL_MATCONT, a continuation tool-
box for MATLAB [28, 29, 30]. For this modified TP06 model symbolic derivatives up to the fifth order
can be derived, which is desirable as it allows for discovering more (accurate) complex bifurcations
using the algorithm.

Although it is a modified TP06 model which is investigated using bifurcation theory in this paper, we will
present several examples validating that the analysis presented also provides fairly precise predictions
of the dynamics of the TP06 model itself. As a first example, the two models produce indistinguishable
output in the two plots in Figure 2. Figure 2(b) illustrates one example of an EAD. To be more precise,
EADs are pathological voltage oscillations during the plateau or the repolarisation phase of the cardiac
action potential and considered as potential precursors to cardiac arrhythmia.
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(b)

Figure 2: Comparison of the trajectories of the original TP06 model with the modified one. (a) normal
action potential. (b) early afterdepolarisation. Here, we use GCaL = 0.000175 cm3/(µFs), cf. [15],
to adjust the AP duration.

3 A reformulation of the TP06 model

The TP06 model contains several different ion currents, ion pump, ion exchanger and background
currents:

Iion = IK1 + Ito + IKr + IKs + ICaL + INaK + INa

+IbNa + INaCa + IbCa + IpK + IpCa,

cf. [15, 14] and Figure 1. These currents are depending on individual ionic conductances Gcurrent and
Nernst potentials Ecurrent. Moreover, they may depend on gating variables, which are important for the
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activation and inactivation of the ion currents. For a full description of the variables involved, see [14].
The parameters used in this paper are the same as those in [14], with the exception of theGCaL value,
which is set to GCaL = 0.000175 cm3/(µFs).

The first issue is in the modelling of the sodium current in [15, 14], i.e.

INa = GNam
3hj(V − ENa),

where GNa denotes the ionic conductance and ENa the Nernst potential, while the different gating
variables m, h and j satisfy

dg

dt
= ag(1− g)− bgg = ag − (ag + bg)g =

g∞ − g
τg

,

where g represents the gating variablesm, h and j, while g∞ := g∞(V ) = ag · (ag + bg)
−1 denotes

the equilibrium of the gating variable g and τg := τg(V ) = (ag + bg)
−1 its time scale. To be more

precise, in the modelling of the gating variables h and j, the voltage dependent functions ah, bh, aj
and bj are not continuous, cf. [15]. While the equilibrium of h and j are equal, we use the idea from [31]
and reformulate h and j to one new gating variable v, and modify the sodium current to

INa = GNam
3v2(V − ENa).

Now, v satisfies the differential equation from above with v∞ = h∞ = j∞ and the time relaxation
constant is given by

τv = 0.25 +
2.24 · v∞

(1− tanh(6.468 + 0.07 · V ))
.

As can be seen in the figures throughout the paper, this modification does not change the behaviour
of the system dramatically. However, it is indeed a reformulation of the original TP06 model and the
behaviours are not expected to be identical in all cases. Notably is also, regarding the bifurcation
analysis, that we start with a steady state solution or equilibrium of the investigated system, i.e. v∞ =
h∞ = j∞ is naturally satisfied.

A further problem is evoked by the modelling of the intracellular potassium ion concentration [K]i. The
modelling is the standard one, i.e.

d[K]i
dt

= −IK1 + Ito + IKr + IKs − 2INaK + IpK + Istim
VcF

,

where Vc denotes the cytoplasmic volume and F the Faraday constant ([K]i is depending on the
different potassium currents). For this equation it seems rather difficult or even impossible to find a
steady state for which the continuation algorithm in CL_Matcont converges. To get around this
issue, we removed this differential equation and set [K]i constant equal to the initial concentration
[K]i of the TP06 model, [K]i = 138 mM .

Comparing the resulting trajectories of both models, we see that they do not fit perfectly, cf. Figure 3.
To balance this, we applied an external stimulus to our modified model of Istim = 71.5 pA/pF for
2 ms to produce Figure 2(a) and a slightly different one, Istim = 73.5 pA/pF for 2 ms, to gain
Figure 2(b). Note that the trajectories are now identical. We mention that the applied external stimulus
affects the initial value/starting point of the system and it has an influence on the trajectory, cf. [32].

The advantage of these modest alterations of an already solid model is that we are now able to inves-
tigate complex dynamics by means of bifurcation analysis. We again like to stress that, as illustrated in
the figures, the reformulated model is a fairly good approximation of the original one. Thus, we can to
some extent extract from the analysis fairly precise predictions of the dynamics of the TP06 model [14].
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Figure 3: Comparison of the trajectories of the original TP06 model with the modified one with Istim =
52 pA

pF
applied for 2 ms.

4 Potassium dynamics of the modified model

In the previous section, we saw that replacing the ODE for the intracellular potassium ion concentration
[K]i by [K]i ≡ 138 mM and the reformulation of the sodium current INa, do not affect the dynamics
of the modified model too much and can be at least compensated by a stronger external stimulus. To
test potential limitations of this approach we now briefly study the potassium dynamics of the modified
model.

To this end, we choose [K]i as bifurcation parameter and we start from [K]i = 138 mM to gain the
bifurcation diagram in Figure 4. It contains a stable and unstable equilibrium branch (black solid and
dashed line), respectively, and a supercritical Andronov–Hopf (AH) bifurcation (blue dot), from which a
stable limit cycle branch (blue line) bifurcates. Furthermore, via a period doubling (PD) bifurcation (red
square) the first limit cycle branch loses stability and a second stable limit cycle branch containing a
second PD bifurcation bifurcates.

Starting from [K]i = 10 mM we get a second equilibrium branch with a second supercritical AH
bifurcation, cf. Figure 5. Thus, the system exhibits two supercritical AH bifurcations, one for [K]i ≈
13.3562 mM and one for [K]i ≈ 36.3252 mM . From both AH bifurcations a stable limit cycle
branch bifurcates. Indeed, the dominating dynamics are due to the one at [K]i ≈ 13.3562 mM and
its limit cycle branch, respectively.

Notice that both limit cycle branches collide with the unstable equilibrium branch and terminate there.
In addition, it is obvious from Figure 5 that the modified TP06 model may exhibit periodic oscillatory
pattern for a reduced intracellular potassium concentration [K]i. Figure 5 also indicates that reducing
[K]i at least determines whether the AP reaches it resting potential or not. For instance, [K]i =
40mM implies that the trajectory has a stable equilibrium at approximately−50mV . Therefore, the
resting potential cannot be reached, cf. Figure 6.

Comparing these findings with the original TP06 model by choosing the [K]i value of the modified
TP06 model as the initial intracellular potassium concentration of the original TP06 model, we see
that our bifurcation analysis yields also a fairly good predication for the dynamics of the original TP06
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Figure 4: Potassium dynamics: Bifurcation diagram for the modified TP06 model with intracellular
potassium ion concentration [K]i as bifurcation parameter (projection onto the ([K]i, V )-plane).

model, cf. Figure 6. More precisely, a reduction of the initial intracellular potassium concentration for
the original TP06 model may lead to periodic oscillatory pattern.

This shows that fixing and varying [K]i leads to similar dynamics as changing the initial intracellular
potassium concentration of the TP06 model. In both cases, the trajectories do not reach the resting
potential and no further initial stimulus is needed to produce a change in the membrane potential,
since periodic patterns occur, some sort of ventricular tachyarrhythmias [33, 34, 35]. Due to the fact
that the resting phase is designated by high potassium currents, it is not surprising that the reduction
of [K]i may inhibit the AP to reach its resting potential. Our analysis shows that considering a fixed
intracellular potassium concentration is not a significant limitation and yields comparable results as in
the TP06 model choosing the fixed [K]i value as initial value. The modification of the sodium current
INa also modestly modify the behaviour of the system. Therefore, these modifications are reasonable
and one can keep [K]i ≡ 138 mM fixed.

5 Reduction of the rapid and slow potassium currents

Due to the common knowledge that a reduction of the potassium currents, mainly the rapid one IKr ,
may lead to certain cardiac arrhythmia like EADs, it is natural to investigate the dynamics of the modi-
fied TP06 model by means of bifurcation analysis choosing one or more of the current specific conduc-
tances GKr and/or GKs as bifurcation parameter(s). Starting with the dynamics of the modified TP06
model with respect to GKr it turns out that the system has only for negative values of GKr an AH
bifurcation and the limit cycle branch remains also on the negative part of the GKr-axis. Furthermore,
no EADs (via a reduced rapid potassium current) appear, neither for the modified TP06 model nor for
the original one, which corresponds also to the findings in [36]. However, EADs may appear via a re-
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a)

b)

Figure 5: Potassium dynamics: Bifurcation diagram for the modified TP06 model with [K]i as bifur-
cation parameter including both AH bifurcation (projection onto the ([K]i, xr1 , V )-space). a) Zoom
and rotation of the bifurcation diagram. b) Zoom and projection of the bifurcation diagram onto the
([K]i, V )-plane.

duced slow potassium current IKs and as a combination of a reduction of the fast and slow potassium
currents. The potential effect of a reduced slow potassium current IKs is illustrated in Figure 7.

Therefore, we focus our study on the dynamics of the modified TP06 model with respect to a com-
bination of GKs and GKr . As one example for the occurrence of EADs via a combination of reduced
GKs andGKr , we consider a 75% blockade of the slow potassium current IKs , i.e. ḠKs = 0.25 ·GKs ,
and we choose the conductance GKr as bifurcation parameter, cf. Figure 8(a) & (b). Remember that
our model is a 17 dimensional ODE system, thus we have a 17 dimensional phase space plus an ad-
ditional dimension due to the bifurcation parameter. Therefore, the visualisation is tricky and we only
present certain projections, which illustrate the dynamics well. In Figure 8(a) the equilibrium curve
changes stability via a supercritical AH bifurcation (at GKr ≈ −0.1120nS

pF
) and a limit cycle branch

bifurcates, which changes stability at a torus bifurcation (at GKr ≈ −0.0623nS
pF

), cf. [37], and exhibits

a PD bifurcation (at GKr ≈ −0.0119nS
pF

). Notice that the AH bifurcation lies outside a physiological
relevant range as well as the torus bifurcation and the PD bifurcations, cf. Figure 8(a). However, parts
of the limit cycle branches are in a plausible range and determine the dynamics of the system. From
the first PD bifurcation a further limit cycle branch bifurcates and contains a second PD bifurcation
(at GKr ≈ −0.0103nS

pF
), where a third limit cycle branch bifurcates with a third PD bifurcation (at

GKr ≈ −0.0099nS
pF

), cf. Figure 8(a). Such a PD cascade is an indication of the occurrence of EADs,
cf. [32, 18, 19]. Although the analysis indicates that EADs may appear, whether they actually do is
also determined by the external stimulus in combination with the initial values.

This is visible in Figure 8(b), where we include only the first two limit cycle branches and consider
only a physiological relevant range of GKr . Moreover, we include several trajectories of the modified
system for different values of GKr (green lines). Although, the autonomous system exhibits a PD
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Figure 6: Comparison of the trajectories of the original TP06 model (initial value [K]i = 20 mM or
[K]i = 35 mM ) with the modified TP06 model with Istim = 73 pA

pF
applied for 2 ms and [K]i =

20 mM (a) or [K]i = 35 mM (b).

cascade, EADs only appear if the trajectory of the non-autonomous ODE system can enter the inside
of the (unstable) limit cycle branches and can surround the unstable equilibrium curve before leaving
again the basin of attraction and reaching the resting potential. This indicates how initial values and/or
the initial stimulus also decide whether a trajectory reaches a certain basin of attraction and certain
dynamics appear. Finally, we want to highlight that the first trajectory in Figure 8(b), the one forGKr =
0nS
pF

, is the same trajectory as in Figure 2(b).

In addition, we investigate the effect of a blockade of both potassium currents by introducing a new
parameter η ∈ [0, 1]:

ḠKr = η ·GKr and ḠKs = η ·GKs . (2)

This enables the study how a potential blockade of the fast and slow potassium current at the same
time affects the dynamics of the modified TP06 model. This yields the bifurcation diagram in Figure 9
using η as bifurcation parameter reflecting the percentage of the blockade. Similar to Figure 8 the
modified TP06 model exhibits a supercritical AH bifurcation for η ≈ 0.1628, where a stable limit
cycle branch bifurcates, which loses stability at a torus bifurcation (η ≈ 0.1645) and from the first
PD bifurcation (η ≈ 0.1971) a second unstable limit cycle branch bifurcates. In this situation the
dynamics of our interest, i.e. EADs, can be connected with the torus bifurcation (EADs with an extreme
prolongation of the duration, but only for the modified TP06 model) and with the PD bifurcations (EADs
with a “normal” prolongation of the duration for both models), cf. Figure 9(b) and Figure 10. We see
that normal AP appears already as soon as the first limit cycle branch (with an unstable, repelling
branch) covers the complex dynamics of the autonomous system. We also have in a physiologically
relevant region a transition between an excitable and oscillatory media close to the supercritical AH
bifurcation as in [32], cf. [38, 39].

6 Predictions of the modified model on the dynamics of the TP06
monodomain model

One major aim in cardiac research is to understand wave patterns like travelling waves, spiral waves,
wave breakup and instabilities that might be linked to certain cardiac arrhythmia, see [38, 40, 41, 42]. In
this section, we show by example that complex dynamics linked to EADs found through the bifurcation
analysis of the modified model, yields complex dynamics on the tissue level of the TP06 model.
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Figure 7: Comparison of the trajectories of the modified TP06 and the TP06 model with different
reduced GKs value, where GKr = 0.153 nS/pF is the value from [14]. Furthermore, in (b) - (d) a
stimulus Istim = 71.5 pA/pF7 over 2 ms was applied, while in (a) Istim = 73.5 pA/pF over 2 ms.

To study the behaviour of the model on macro-scale, we use the following 2D monodomain model:

Cm
∂V

∂t
= −Iion + Istim +∇ ·

((
D 0
0 D

)
∇V

)
, (3)

where Cm = 1 µF/cm2 and D = 0.00154 cm2/ms, equipped with Neumann boundary condition.
The diffusion matrix is chosen in accordance with [14]. Note that the mondomain model is directly
linked to the bidomain model, which takes into account the anisotropy of the intra- and extracellular
spaces. For a detailed description we refer to [43, 44, 45, 46, 47, 48].

The simulations of the tissue level model (3) are run on a 1000× 1000 grid with spatial discretization
dx = 0.025 cm with a five-point stencil for the Laplacian (as in [10]) and with time step dt = 0.0812.
The Rush and Larsen scheme [49] is used to integrate the gating variables in time, and Eulers method
is used for the rest.

In Figure 11 we apply a stimulus of Istim = 26.2 pA/pF to 6 × 200 cells on the left side of the
domain for both the normal parameter settings of the TP06 model and for the parameter settings in
Figure 2(b).

The model (3) with the normal setting, presented in the left column, produces a wave that simply
crosses the computational domain. In the beginning, system (3) with the other setting produces an
identical wave to that of the one in the left column. Before t = 600ms, however, this is no longer
the case. After some time, the voltages at the top of the computational domain crosses the threshold
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Figure 8: Bifurcation diagram of the modified model of [14] with a 75% blockade of the slow potassium
current IKs , usingGKr as bifurcation parameter: (a) Projection onto the (GKr , V )-plane. (b) Projection
onto the (GKr , f, V )-space.
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Figure 9: Bifurcation diagram of the modified model of [14] utilising η, cf. equation (2), as bifurcation
parameter: (a) Projection onto the (η, V )-plane. (b) Projection onto the (η, xr1 , V )-space.

(Figure 11(d)), which later results in similar voltage patterns to that of the fibrillation plots presented
in [10]. Given that the parameter setting is within the range of EADs occurring for the modified model,
this is to be expected for the original TP06 model.

Using a standard S1-S2 protocol to produce a spiral wave (see for example [10]) with the same initial
stimulus as above and with normal parameter settings, we get the spiral wave depicted in Figure 12(a).
Switching the parameters to that of Figure 2(b) after 4 seconds, which can be seen as a sudden onset
of the effect of a drug, leads to cardiac death, see Figure 12(b)-(d).

7 Discussion and conclusion

The main focus of this paper is to better understand the dynamics of the TP06 model [14] through
bifurcation analysis. This is done by a slight reformulation of the model, which is smooth and regular
enough for bifurcation theory to be applicable. To this end we reformulated the sodium current INa

and fixed the intracellular potassium concentration [K]i in the TP06 ODE system. This modification
enables a proper mathematical analysis and a fairly good approximation of the TP06 model [14] by
the modified one. As demonstrated, fixing the intracellular potassium concentration [K]i by the initial
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Figure 10: Trajectories of the modified TP06 model for different values of η, which are included in the
bifurcation diagram 9(b).

intracellular potassium concentration of the TP06 model [14] shows similar impact on the dynamics of
both models. This finding was further validated by a detailed bifurcation analysis.

The bifurcation analysis of the modified TP06 model detected parameter values and ranges which
induce EADs by a reduction of the rapid and slow potassium currents, IKr and IKs , respectively.
These findings indicate similar dynamics for the TP06 model [14], and that this is indeed the case was
demonstrated through several examples for both the single-cell and monodomain TP06 model. Thus,
the bifurcation analysis of the modified model can be used to predict dynamics in the TP06 model.

The modification does not give a perfect one-to-one relation between the two models, which is to
be expected when one alters a model. It is however interesting that the modified model predicts the
dynamics of the original TP06 model both for normal APs and EADs as well as it does.

Finally, we would like to point out that the bifurcation analysis encodes the behaviour of the underlying
autonomous ODE system. However, the external stimulus and the initial values play a crucial role in
whether certain dynamics actually occur or not. In fact, the stimulus determines whether the trajectory
reaches the basin of attraction and if dynamics like EADs appear. Examining which dynamics actually
do appear in a cardiac model is a general issue and the investigation of synchronisation is highly
important due to the risk that the global heart’s dynamics may shift the trajectory into a dangerous
region.

In conclusion, we have demonstrated the sensitivity of the modified cellular model with respect to the
system parameters, the initial stimulus, and the initial values, and that this sensitivity translates over
to the original TP06 model.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: The monodomain model (3) is simulated by applying a 6 × 200 cells on the left side of
the domain with the two parameter settings used to produce Figure 2. The time t is measured in
milliseconds. The parameters of Figure 2(a) are used to produce the left column, ant the parameters
of Figure 2(b) are used to the right.
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