165 research outputs found
MAB21L1 loss of function causes a syndromic neurodevelopmental disorder with distinctive cerebellar, ocular, craniofacial and genital features (COFG syndrome).
BACKGROUND: Putative nucleotidyltransferase MAB21L1 is a member of an evolutionarily well-conserved family of the male abnormal 21 (MAB21)-like proteins. Little is known about the biochemical function of the protein; however, prior studies have shown essential roles for several aspects of embryonic development including the eye, midbrain, neural tube and reproductive organs. OBJECTIVE: A homozygous truncating variant in MAB21L1 has recently been described in a male affected by intellectual disability, scrotal agenesis, ophthalmological anomalies, cerebellar hypoplasia and facial dysmorphism. We employed a combination of exome sequencing and homozygosity mapping to identify the underlying genetic cause in subjects with similar phenotypic features descending from five unrelated consanguineous families. RESULTS: We identified four homozygous MAB21L1 loss of function variants (p.Glu281fs*20, p.Arg287Glufs*14 p.Tyr280* and p.Ser93Serfs*48) and one missense variant (p.Gln233Pro) in 10 affected individuals from 5 consanguineous families with a distinctive autosomal recessive neurodevelopmental syndrome. Cardinal features of this syndrome include a characteristic facial gestalt, corneal dystrophy, hairy nipples, underdeveloped labioscrotal folds and scrotum/scrotal agenesis as well as cerebellar hypoplasia with ataxia and variable microcephaly. CONCLUSION: This report defines an ultrarare but clinically recognisable Cerebello-Oculo-Facio-Genital syndrome associated with recessive MAB21L1 variants. Additionally, our findings further support the critical role of MAB21L1 in cerebellum, lens, genitalia and as craniofacial morphogenesis
Rare deleterious mutations of the gene EFR3A in autism spectrum disorders
Background: Whole-exome sequencing studies in autism spectrum disorder (ASD) have identified de novo mutations in novel candidate genes, including the synaptic gene Eighty-five Requiring 3A (EFR3A). EFR3A is a critical component of a protein complex required for the synthesis of the phosphoinositide PtdIns4P, which has a variety of functions at the neural synapse. We hypothesized that deleterious mutations in EFR3A would be significantly associated with ASD. Methods: We conducted a large case/control association study by deep resequencing and analysis of whole-exome data for coding and splice site variants in EFR3A. We determined the potential impact of these variants on protein structure and function by a variety of conservation measures and analysis of the Saccharomyces cerevisiae Efr3 crystal structure. We also analyzed the expression pattern of EFR3A in human brain tissue. Results: Rare nonsynonymous mutations in EFR3A were more common among cases (16 / 2,196 = 0.73%) than matched controls (12 / 3,389 = 0.35%) and were statistically more common at conserved nucleotides based on an experiment-wide significance threshold (P = 0.0077, permutation test). Crystal structure analysis revealed that mutations likely to be deleterious were also statistically more common in cases than controls (P = 0.017, Fisher exact test). Furthermore, EFR3A is expressed in cortical neurons, including pyramidal neurons, during human fetal brain development in a pattern consistent with ASD-related genes, and it is strongly co-expressed (P < 2.2 × 10−16, Wilcoxon test) with a module of genes significantly associated with ASD. Conclusions: Rare deleterious mutations in EFR3A were found to be associated with ASD using an experiment-wide significance threshold. Synaptic phosphoinositide metabolism has been strongly implicated in syndromic forms of ASD. These data for EFR3A strengthen the evidence for the involvement of this pathway in idiopathic autism
Molecular Cytogenetic Analysis and Resequencing of Contactin Associated Protein-Like 2 in Autism Spectrum Disorders
Autism spectrum disorders (ASD) are a group of related neurodevelopmental syndromes with complex genetic etiology.1 We identified a de novo chromosome 7q inversion disrupting Autism susceptibility candidate 2 (AUTS2) and Contactin Associated Protein-Like 2 (CNTNAP2) in a child with cognitive and social delay. We focused our initial analysis on CNTNAP2 based on our demonstration of disruption of Contactin 4 (CNTN4) in a patient with ASD;2 the recent finding of rare homozygous mutations in CNTNAP2 leading to intractable seizures and autism;3 and in situ and biochemical analyses reported herein that confirm expression in relevant brain regions and demonstrate the presence of CNTNAP2 in the synaptic plasma membrane fraction of rat forebrain lysates. We comprehensively resequenced CNTNAP2 in 635 patients and 942 controls. Among patients, we identified a total of 27 nonsynonymous changes; 13 were rare and unique to patients and 8 of these were predicted to be deleterious by bioinformatic approaches and/or altered residues conserved across all species. One variant at a highly conserved position, I869T, was inherited by four affected children in three unrelated families, but was not found in 4010 control chromosomes (p = 0.014). Overall, this resequencing data demonstrated a modest nonsignificant increase in the burden of rare variants in cases versus controls. Nonethless, when viewed in light of two independent studies published in this issue of AJHG showing a relationship between ASD and common CNTNAP2 alleles,4,5 the cytogenetic and mutation screening data suggest that rare variants may also contribute to the pathophysiology of ASD, but place limits on the magnitude of this contribution
De novo insertions and deletions of predominantly paternal origin are associated with autism spectrum disorder
Whole-exome sequencing (WES) studies have demonstrated the contribution of de novo loss-of-function single-nucleotide variants (SNVs) to autism spectrum disorder (ASD). However, challenges in the reliable detection of de novo insertions and deletions (indels) have limited inclusion of these variants in prior analyses. By applying a robust indel detection method to WES data from 787 ASD families (2,963 individuals), we demonstrate that de novo frameshift indels contribute to ASD risk (OR= 1.6; 95% CI= 1.0-2.7; p= 0.03), are more common in female probands (p= 0.02), are enriched among genes encoding FMRP targets (p= 6× 10-9), and arise predominantly on the paternal chromosome (p< 0.001). On the basis of mutation rates in probands versus unaffected siblings, we conclude that de novo frameshift indels contribute to risk in approximately 3% of individuals with ASD. Finally, by observing clustering of mutations in unrelated probands, we uncover two ASD-associated genes: KMT2E (MLL5), a chromatin regulator, and RIMS1, a regulator of synaptic vesicle release
Increasing the reference populations for the 55 AISNP panel: the need and benefits
Ancestry inference for an individual can only be as good as the reference populations with allele frequency data on the SNPs being used. If the most relevant ancestral population(s) does not have data available for the SNPs studied, then analyses based on DNA evidence may indicate a quite distantly related population, albeit one among the more closely related of the existing reference populations. We have added reference population allele frequencies for 14 additional population samples (with >1100 individuals studied) to the 125 population samples previously published for the Kidd Lab 55 AISNP panel. Allele frequencies are now publicly available for all 55 SNPs in ALFRED and FROG-kb for a total of 139 population samples. This Kidd Lab panel of 55 ancestry informative SNPs has been incorporated in commercial kits by both ThermoFisher Scientific and Illumina for massively parallel sequencing. Researchers employing those kits will find the enhanced set of reference populations useful
Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases.
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies
Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas
RNA polymerase II mediates the transcription of all protein-coding genes in eukaryotic cells, a process that is fundamental to life. Genomic mutations altering this enzyme have not previously been linked to any pathology in humans, which is a testament to its indispensable role in cell biology. On the basis of a combination of next-generation genomic analyses of 775 meningiomas, we report that recurrent somatic p.Gln403Lys or p.Leu438_His439del mutations in POLR2A, which encodes the catalytic subunit of RNA polymerase II (ref. 1), hijack this essential enzyme and drive neoplasia. POLR2A mutant tumors show dysregulation of key meningeal identity genes including WNT6 and ZIC1/ZIC4. In addition to mutations in POLR2A, NF2, SMARCB1, TRAF7, KLF4, AKT1, PIK3CA, and SMO4 we also report somatic mutations in AKT3, PIK3R1, PRKAR1A, and SUFU in meningiomas. Our results identify a role for essential transcriptional machinery in driving tumorigenesis and define mutually exclusive meningioma subgroups with distinct clinical and pathological features
Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism
SummaryWe have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6–12.0, p = 2.4 × 10-7). We estimate there are 130–234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1
Clinical effectiveness and patient perspectives of different treatment strategies for tics in children and adolescents with Tourette syndrome: a systematic review and qualitative analysis
Background: Tourette syndrome (TS) is a neurodevelopmental condition characterised by chronic motor and vocal tics affecting up to 1% of school-age children and young people and is associated with significant distress and psychosocial impairment.
Objective: To conduct a systematic review of the benefits and risks of pharmacological, behavioural and physical interventions for tics in children and young people with TS (part 1) and to explore the experience of treatment and services from the perspective of young people with TS and their parents (part 2).
Data Sources: For the systematic reviews (parts 1 and 2), mainstream bibliographic databases, The Cochrane Library, education, social care and grey literature databases were searched using subject headings and text words for tic* and Tourette* from database inception to January 2013.
Review/research methods: For part 1, randomised controlled trials and controlled before-and-after studies of pharmacological, behavioural or physical interventions in children or young people (aged < 18 years) with TS or chronic tic disorder were included. Mixed studies and studies in adults were considered as supporting evidence. Risk of bias associated with each study was evaluated using the Cochrane tool. When there was sufficient data, random-effects meta-analysis was used to synthesize the evidence and the quality of evidence for each outcome was assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. For part 2, qualitative studies and survey literature conducted in populations of children/young people with TS or their carers or in health professionals with experience of treating TS were included in the qualitative review. Results were synthesized narratively. In addition, a national parent/carer survey was conducted via the Tourettes Action website. Participants included parents of children and young people with TS aged under 18 years. Participants (young people with TS aged 10–17 years) for the in-depth interviews were recruited via a national survey and specialist Tourettes clinics in the UK.
Results: For part 1, 70 studies were included in the quantitative systematic review. The evidence suggested that for treating tics in children and young people with TS, antipsychotic drugs [standardised mean difference (SMD) –0.74, 95% confidence interval (CI) –1.08 to –0.41; n = 75] and noradrenergic agents [clonidine (Dixarit®, Boehringer Ingelheim) and guanfacine: SMD –0.72, 95% CI –1.03 to –0.40; n = 164] are effective in the short term. There was little difference among antipsychotics in terms of benefits, but adverse effect profiles do differ. Habit reversal training (HRT)/comprehensive behavioural intervention for tics (CBIT) was also shown to be effective (SMD –0.64, 95% CI –0.99 to –0.29; n = 133). For part 2, 295 parents/carers of children and young people with TS contributed useable survey data. Forty young people with TS participated in in-depth interviews. Four studies were in the qualitative review. Key themes were difficulties in accessing specialist care and behavioural interventions, delay in diagnosis, importance of anxiety and emotional symptoms, lack of provision of information to schools and inadequate information regarding medication and adverse effects.
Limitations: The number and quality of clinical trials is low and this downgrades the strength of the evidence and conclusions.
Conclusions: Antipsychotics, noradrenergic agents and HRT/CBIT are effective in reducing tics in children and young people with TS. The balance of benefits and harms favours the most commonly used medications: risperidone (Risperdal®, Janssen), clonidine and aripiprazole (Abilify®, Otsuka). Larger and better-conducted trials addressing important clinical uncertainties are required. Further research is needed into widening access to behavioural interventions through use of technology including mobile applications (‘apps’) and video consultation.
Study registration: This study is registered as PROSPERO CRD42012002059
From genetics to epigenetics: new perpectives in Tourette Syndrome research
Gilles de la Tourette Syndrome (TS) is a neurodevelopmental disorder marked by the appearance of multiple involuntary motor and vocal tics. TS presents high comorbidity rates with other disorders such as attention deficit hyperactivity disorder (ADHD) and obsessive compulsive disorder (OCD). TS is highly heritable and has a complex polygenic background. However, environmental factors also play a role in the manifestation of symptoms. Different epigenetic mechanisms may represent the link between these two causalities. Epigenetic regulation has been shown to have an impact in the development of many neuropsychiatric disorders, however very little is known about its effects on Tourette Syndrome.This review provides a summary of the recent findings in the genetic background of TS, followed by an overview on different epigenetic mechanisms, such as DNA methylation, histone modifications and non-coding RNAs in the regulation of gene expression. Epigenetic studies in other neurological and psychiatric disorders are discussed along with the TS-related epigenetic findings available in the literature to date. Moreover, we are proposing that some general epigenetic mechanisms seen in other neuropsychiatric disorders may also play a role in the pathogenesis of TS
- …